
2 2 I E E E S O F T W A R E P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y 0 7 4 0 - 7 4 5 9 / 0 7 / $ 2 5 . 0 0 © 2 0 0 7 I E E E

tools of the trade
E d i t o r : D i o m i d i s S p i n e l l i s ■ A t h e n s U n i v e r s i t y o f E c o n o m i c s a n d B u s i n e s s ■ d d s @ a u e b . g r

W
hen conference participants inter-
rupt a speaker with applause, you
know the speaker has struck a
chord. This happened when Alan
Davis, past editor in chief of IEEE
Software, gave a talk on improving

the requirements engineering process at the
NASSCOM (Indian National Association of Soft-

ware and Services Companies)
Quality Summit in Bangalore in
September 2006. He was ex-
plaining why a marketing team
will often agree with developers
on additional features and a
compressed delivery schedule
that both sides know to be un-
realistic. The truth is that this
places the two parties in a Ma-
chiavellian win-win situation.

When the product’s delivery is inevitably de-
layed, the developers will claim that they said
from the beginning that they couldn’t meet the
schedule but that marketing insisted on it. The
marketing people also end up with a convenient
scapegoat. If the product launch is a flop, they
can say they missed a critical marketing time
window owing to the product’s delay. Where
else are we playing such games?

Aging systems
Consider a 15-year-old software system. Its de-

sign doesn’t match the environment it operates
in, its original developers have matured during
its lifetime, and hundreds of fixes and improve-
ments have accumulated thick layers of “cruft”
(redundant or poorly designed areas) all over its
code base. Any sensible software engineer would
argue that the system is ready for scrapping and
rebuilding from scratch.

However, pointing out this fact is bad for all
parties involved. It shows that developers
haven’t really done a stellar job over the years;
they’ll have to admit that many of their design
decisions turned out to be incorrect. Getting a
system’s design wrong is natural because, first
of all, the environment a system operates in
changes the moment the system is installed and,
second, because the expectations people have of
a system change with time. To get a feeling of
changed expectations, try typing a page on a
typewriter—once considered to be the perfect
tool for writing neat documents. In this context,
hindsight is treacherous and unfair because it
changes the rules of the game, after the game
has finished. Although in the year 2000
Pets.com managed to raise US$82.5 million in
an IPO, seven years later those same people
who bought Pets.com stock would ask: “A site
selling pet food over the Web? What were they
thinking?”

Additionally, in our relatively young profes-
sion, many aging systems were originally writ-

Silver Bullets
and Other Mysteries

Diomidis Spinellis

It seemed like a good idea at the time. —Ken Thomson, on naming the Unix system call to
create a file “creat”

M a y / J u n e 2 0 0 7 I E E E S O F T W A R E 2 3

TOOLS OF THE TRADE

ten by rookie programmers who were
cutting their teeth on code for the first
time. So, the product is likely badly de-
signed, its code lacking in structure and
consistency. I often look at code I wrote
several years ago, and I can immediately
realize in which phase of programming
immaturity and folly I was in. There was
a phase when I thought that “shrt idnt-
frs wr cool,” one where I tried to exploit
every trick of the C programming lan-
guage—because I could—and one where
I hadn’t yet learned to comment my code
(even if the only eyes that would see it
were my own). I wonder what I’ll think
in 10 years of the code I write now.

Even if a system were perfectly de-
signed to match its environment, 10
years later, its code would still show the
signs of time. Successive fixes and im-
provements typically violate initial as-
sumptions. Developers who fail to un-
derstand an aspect of the system’s design
will add their bit in a different way. Or,
even if they understand the design, they
might not understand the system’s coding
conventions and use different ones. This
occurs often in systems written in lan-
guages such as C++, where incompatible
identifier naming conventions coexist,
even within the language’s own libraries.
Worse, other developers will duplicate
code, violating the Don’t Repeat Yourself
(DRY), single point of control principle,
increasing the risks of future changes. In
sum, the code will accumulate cruft and
become unmaintainable.

We’re accustomed to aging in the
physical world. We know that people,
dogs, cars, ships, clothes, and computers
have a finite lifetime. Our experience
with immaterial creations is mixed. The
works of Homer, Shakespeare, Mozart,
and, dare I say, the Beatles haven’t really
deteriorated over the years. On the other
hand, a journal article in software engi-
neering passes its prime (it reaches the
so-called aggregate cited half-life) in
eight years; in the sprightly field of nano-
technology, this figure is just four years.
Unfortunately, we haven’t yet come to
terms with the idea that software ages,
often beyond salvation.

On to silver bullets
So what can developers do when faced

with an aged software system? They could
simply come clean. Claim that the code
that they were paid to design, write, and
maintain is a pile of excrement and ask for
another chance to do it right. Even the
most thick-skinned and politically naive
developer will, however, realize that this
isn’t a smart move. Coming clean is also a
problem for the developers’ managers, be-
cause they’ll have to explain the mess to
their higher-ups.

This is where a silver bullet comes in
handy. Imagine a system that cost
$300,000 to develop and in which, over
the years, its owners invested another
$700,000 to maintain and enhance.
Starry-eyed managers might think they
have a system worth a million dollars
on their hands, but we all know that
due to its age, the system’s real value is
a tiny fraction of that. The developers
continually find themselves in the un-
comfortable position of having to ex-
plain why new changes are so costly
and time-consuming and why each im-
provement and fix introduces so many
new bugs.

One day, a godsend order for a major
enhancement comes in, and the develop-
ers estimate its cost at $500,000. Before
their client has time to recover, they claim
that a revolutionary new technology is
available that will let them build with
this sum both the existing system and the
new enhancement from scratch. More-
over, by adopting this new technology,
future enhancements will cost only a

fraction of what they would cost using
the old technology.

The precise nature of this technology
claiming to offer dramatic productivity
improvements is unimportant. At various
times, this silver bullet has been known
by names such as structured program-
ming, object-oriented languages, 4GLs
(fourth-generation programming lan-
guages), CASE (computer-aided software
engineering) tools, RDBMSs (relational da-
tabase management systems), XML, visual
programming, n-tier architectures, ma-
naged code—the list goes on. What’s im-
portant is that the move suits everybody
perfectly. Developers can abandon their
old code without having to explain the
awkward truth; they’ll also get to update
their technical skills and brighten their em-
ployment prospects. Managers will be seen
as heroes for taking a bold step with the
new technology (in management, action is
often mistaken for achievement). Conve-
niently, at this point an army of vendors
will also step in to offer to their eager lis-
teners supporting evidence and success sto-
ries. And—this is the icing on the cake—by
following this route, developers and man-
agers also buy an insurance policy. If the
transition plan fails and the bullet’s magical
productivity increases don’t materialize,
they can claim that the technology is still
immature or had hidden flaws.

W hat’s my opinion of this charade?
Software ages and becomes increas-
ingly expensive to maintain. New

technologies offer modest but not spec-
tacular improvements in productivity. It’s
therefore sensible from time to time to
rebuild a system from scratch. It might
be harmless and politically expedient to
claim that we’ve found a silver bullet, but
it’s even better to know what we’re really
doing.

Diomidis Spinellis is an associate professor in the De-
partment of Management Science and Technology at the Athens
University of Economics and Business and the author of Code
Quality: The Open Source Perspective (Addison-Wesley, 2006).
Contact him at dds@aueb.gr.

We haven’t yet
come to terms

with the idea that
software ages, often

beyond salvation.
Post your comments online by visiting the column’s
blog: www.spinellis.gr/tools

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 1.8)
 /CalRGBProfile (Apple RGB)
 /CalCMYKProfile (U.S. Sheetfed Uncoated v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName <FEFF0068007400740070003a002f002f007700770077002e0063006f006c006f0072002e006f00720067ffff>
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF0049004500450045002000580070006c006f0072006500200073007000650063007300200066006f0072002000440069007300740069006c006c0065007200200036002e0020004d0056>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

