
1 2 I E E E S O F T W A R E P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y 0 7 4 0 - 7 4 5 9 / 0 7 / $ 2 0 . 0 0 © 2 0 0 7 I E E E

tools of the trade
E d i t o r : D i o m i d i s S p i n e l l i s ■ A t h e n s U n i v e r s i t y o f E c o n o m i c s a n d B u s i n e s s ■ d d s @ a u e b . g r

S
ometimes we encounter ideas that in-
spire us for life. For me, this was a
Unix command pipeline I came across
in the ’80s:

tr -cs A-Za-z ‘\n’ |

tr A-Z a-z |

sort |

uniq |

comm -23 - /usr/dict/words

This command will read a text document from
its standard input and produce a list of mis-

spelled words. It works by
transforming all nonalphabetic
characters into new lines, fold-
ing uppercase letters to lower-
case, sorting the resultant list of
words, removing duplicates,
and finally printing those words
that don’t appear in the system
dictionary.

Our cryptic pipeline is re-
markably portable and effi-

cient. By fixing the system dictionary’s loca-
tion, which has moved over the years, I
successfully tested the pipeline on modern
FreeBSD and Linux systems. Impressively, on
one of those increasingly common multi-
processor machines, the pipeline utilized 1.25
of the two available processors—a feat, even
by modern standards. However, when I first
saw the pipeline, portability and multiproces-
sor utilization weren’t on my radar screen.
What impressed me was how five straightfor-
ward commands running on a relatively simple
system that supported a few powerful abstrac-
tions could achieve so much.

I hoped life in computer science would be a

series of such revelations, but I was in for disap-
pointment. Things appeared to be going down-
hill from then on. I saw systems become increas-
ingly complex, the tools that first impressed me
fall into disuse, and the concept of reuse
preached more than practiced. A “hello world”
program in the then shiny new X Window Sys-
tem or Microsoft Windows was a 100-line af-
fair. I felt our profession had hit a new low when
I realized that a particularly successful ERP (en-
terprise resource planning) system used a pro-
prietary in-house developed database and pro-
gramming language. It seemed Hamming was
right.

An unexpected picture
Yet, progress moves in surprising ways. Now-

adays, I’m proud of our achievements and opti-
mistic about our future. Look at figure 1, de-
picting a position of what became known as the
Game of the Century: a chess game played be-
tween Donald Byrne and 13-year old Bobby Fis-
cher on 17 October 1956. Although the game
was remarkable, so is the ecosystem behind the
picture.

The picture on the left comes from the Wiki-
pedia article on the game (http://en.wikipedia.
org/wiki/The_Game_of_the_Century_(chess), as
of 21 October 2006). To create it, one of the ar-
ticle’s 65 contributors wrote the layout appearing
on the figure’s right, using a readable and concise
domain-specific minilanguage. Despite what you
might think, this chessboard description lan-
guage isn’t an inherent part of MediaWiki
(Wikipedia’s engine). Instead, it’s a MediaWiki
template: a parameterized, reusable formatting
element. About a dozen people wrote this partic-
ular template, using MediaWiki’s low-level con-
structs, such as tables and images.

Cracking Software Reuse
Diomidis Spinellis

[Newton] said, “If I have seen further than others, it is because I’ve stood on the shoulders of
giants.” These days we stand on each other’s feet! — Richard Hamming

J a n u a r y / F e b r u a r y 2 0 0 7 I E E E S O F T W A R E 1 3

TOOLS OF THE TRADE

Digging deeper, we’ll find that Medi-
aWiki consists of about 175,000 lines of
PHP (PHP: hypertext preprocessor) code
using the MySQL relational database en-
gine. A rough count of C/C++ source
code files in the PHP and MySQL distri-
butions gives us 740,000 and 1.8 million
lines, respectively. And underneath, we’ll
find many base libraries on which PHP
depends, the Apache and Squid server
software, and a multimillion-line-large
GNU/Linux distribution. In all, we see a
tremendously complex system that lets
hundreds of thousands of contributors
cooperatively edit two million pages—
and still manages to serve more than
2,000 requests each second.

How we won the war
We must be doing something right.

Having Wikipedia’s software compo-
nents freely available has surely helped,
but there’s more than that in our recent
successes. One important factor is that
we’ve (almost) sorted out the technology
for reuse. Huge organized archives, pio-
neered by the Comprehensive TeX Ar-
chive Network (CTAN) and popularized
by Perl’s Comprehensive Perl Archive

Network (CPAN), let us publish and lo-
cate useful components. The package
management mechanisms of many mod-
ern operating systems have simplified the
installation and maintenance of dis-
parate components and their intricate
dependencies. Programming languages
now offer robust namespace manage-
ment mechanisms to isolate the interac-
tions between components. Shared li-
braries have matured, providing us with
vital savings in memory consumption:
on a lightly loaded system, I recently cal-
culated that shared libraries saved 97
percent of the memory space that we’d
need without them. Widely used plat-
forms, such as Microsoft’s .NET and the
Java Platform Enterprise Edition, have
also helped code reuse by integrating
into their libraries everything but the
kitchen sink. In all, the factors determin-
ing our return on investment from the
components we reuse have moved in the
right direction: modern components,
like our chess description language, offer
more and demand less.

A second important factor of our suc-
cesses is the emergence of new types of
collaboration. Version-control systems,
bug-management databases, mailing
lists, and wikis form the glue of modern
large development teams. At the same
time, code repositories, RSS feeds, auto-
matic software update systems, and

more mailing lists bring together compo-
nent producers and consumers. Claim-
ing that the Internet has revolutionalized
software development might sound far-
fetched, but we’ve got to remember that
20 years ago, systems of the size we’ve
seen were developed only by NASA and
large defense contractors, not volunteers
working in their spare time.

L ike many of my generation, one of
my early sources of inspiration, pre-
dating the Unix pipeline, was Star

Trek’s USS Enterprise. I marveled its in-
tricate technology but always won-
dered how it was built and maintained,
especially when pieces of it got torn
apart in battles. Clearly, the develop-
ment model that gave us the Doric
beauty of Unix and its tools couldn’t be
extended to cover the Enterprise’s
baroque complexity. I used to think
that I would have to take that particu-
lar aspect of the Star Trek offering with
a pinch of salt. Now I see that we com-
puting professionals are developing an
ecosystem where large, intricate sys-
tems can grow organically. And this is
another truly inspiring idea.

Diomidis Spinellis is an associate professor in the De-
partment of Management Science and Technology at the Athens
University of Economics and Business and the author of Code
Quality: The Open Source Perspective (Addison-Wesley, 2006).
Contact him at dds@aueb.gr.

Figure 1. A chess board diagram and its layout description.

{{Chess diagram small|=

| tright

|

|=

8 |rd| | |qd| |rd|kd| |=

7 |pd|pd| | |pd|pd|bd|pd|=

6 | |nd|pd| | |nd|pd| |=

5 | | |ql| | | |bl| |=

4 | | | |pl|pl| |bd| |=

3 | | |nl| | |nl| | |=

2 |pl|pl| | | |pl|pl|pl|=

1 | | | |rl|kl|bl| |rl|=

a b c d e f g h

| The position after 11. Bg5.
}}

Post your comments online by visiting the column’s
blog: www.spinellis.gr/tools

