
7 0 I E E E S O F T W A R E P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y 0 7 4 0 - 7 4 5 9 / 0 6 / $ 2 0 . 0 0 © 2 0 0 6 I E E E

tools of the trade
E d i t o r : D i o m i d i s S p i n e l l i s ■ A t h e n s U n i v e r s i t y o f E c o n o m i c s a n d B u s i n e s s ■ d d s @ a u e b . g r

I
recently participated in an online discus-
sion regarding the advantages of the vari-
ous certification programs. Some voiced
skepticism regarding how well you can
judge a person’s knowledge through an-
swers to narrowly framed multiple-choice

questions. I believe that the way a certification
program examines a person’s
skills is artificial to the point of
uselessness. In practice, I often
find solutions to problems by
looking for answers on the
Web. Knowing where and how
to search for an answer is be-
coming the most crucial prob-
lem-solving skill, yet typical
certification exams still test
rote learning. Other discus-

sants suggested that certification was a way to
enter a job market where employers increas-
ingly asked for experience in a specific technol-
ogy. My response to that argument was that
open source software development efforts offer
us professionals a new and valuable way to ob-
tain significant experience in a wide range of
areas and to advance professionally.

Software development
The most obvious way for a professional to

benefit from open source software is by fixing
and improving existing open source code. We
all know that 40 to 70 percent of the effort that
goes into a software system is spent after the

system’s first incarnation. Yet coursework and
textbook exercises seldom ask us to maintain
an existing system. On the other hand, many
(perhaps too many) open source projects have
lists chock-full of exciting additions and ob-
scure bugs eagerly waiting for us developers to
get our hands on them. By joining an existing
open source software project, we can immedi-
ately practice the art of maintaining other peo-
ple’s code and sharpen our corresponding
skills. Also, once we get our hands dirty, we’ll
see ourselves gradually adopting a more read-
able and maintainable code style.

Joining an open source project is an easy way
to rub shoulders and interact with highly re-
spected professionals. From day one, we can see
what their code looks like, how they address new
issues, and how they interact with other devel-
opers. Even better, as we begin to contribute
code to the project, these colleagues might send
us feedback that will help us improve. (The first
comment I got from my FreeBSD mentor when
I submitted code for review was that I had left
blank spaces in the ends of the lines. Up to that
point, I’d never thought that these could be an
issue; from then onward, I configured my editor
to color them yellow so that I could easily spot
them.) I can’t guarantee you friction-free inter-
actions with the other developers, but those
heated email exchanges can help us become bet-
ter team players: we’ll gradually learn to focus
on an argument’s technical aspects and not take
attacks on our code personally.

Open Source and
Professional Advancement

Diomidis Spinellis

Doing really first-class work, and knowing it, is as good as wine, women (or men) and
song put together. — Richard Hamming

S e p t e m b e r / O c t o b e r 2 0 0 6 I E E E S O F T W A R E 7 1

TOOLS OF THE TRADE

Through participation in open source
projects, we can also perfect our nonver-
bal communication skills. Open source
projects, being globally distributed, typi-
cally rely on a multitude of collaboration
tools ranging from email and instant
messaging to issue management data-
bases, wikis, and version control sys-
tems. Communicating requirements, de-
sign and implementation options, and
bug descriptions through these media in
a precise and technically objective man-
ner is an important skill in today’s global
marketplace—a skill that will surely
sharpen through our exchanges with our
fellow open source developers.

A valuable feature of the open source
landscape is the breadth of available ap-
plications, implementation technologies,
and project sizes. By choosing cleverly,
we can maximize both our professional
gain and our personal joy. We can select
a project to learn a new technology or to
improve our skills in an existing one. We
can thus transfer our skills from, say,
ASP to Ajax or, alternatively, cut our
teeth on advanced Java programming
through Eclipse’s multimillion-line code
base. We can also enter a new applica-
tion domain, such as game program-
ming, networking, or kernel hacking. Fi-
nally, the diversity of open source project
sizes gives us an excellent opportunity to
inject variety into our professional life. If
we work in a small start-up, we can join
a large project to gain a taste of a struc-
tured development process; if our com-
pany is process heavy, joining a small
project lets us experience once again the
joy of coding.

System administration
Increasingly, software systems aren’t

monolithic blocks but complex, large,
heterogeneous ecosystems. In such an
environment, the software professional
must be a system administrator, select-
ing, configuring, connecting, and tuning
subsystems into a robust and efficient
larger part. Again, the typical classroom
or corporate development setting is of-
ten a sterile affair involving preselected,
preinstalled, and preconfigured compo-
nents that just work.

With open source software develop-
ment, we can get the larger picture. We

get a chance to experiment with the com-
ponents, tools, and our development en-
vironment, choosing and configuring a
setup that works and lets us be produc-
tive. At different times, we wear the hats
of a system administrator tinkering with
operating system releases, a database ad-
ministrator configuring a relational
database, a security officer implementing
our security policy and installing patches,
and a network manager making the
pieces of second-hand hardware junk
that inevitably piles up in any self-
respecting hacker’s basement talk to
each other. Any of these skills is valu-
able in today’s marketplace, and the
cross-disciplinary mixture that we’ll ac-
quire from our involvement in open
source projects is even more so.

Development process
Consider development practices such

as issue tracking, version control, unit
testing, style guidelines, the daily build,
code reviews, release engineering, and
traceability. If you work in a small de-
velopment group or a startup, chances
are that you (or, worse, your boss) con-
sider some of these practices obscure
and irrelevant. Yet they are anything
but. Although a talented programmer
can often get away with developing
software by piling code layer upon
code layer, this process isn’t sustainable
in the long run. When the software and
the team that builds it grow large, fail-
ure to adopt a process that includes the
practices I named borders on hubris.
Joining a large open source develop-
ment project will get you first-hand ex-
perience with many cutting-edge devel-
opment practices. So, apart from
polishing your coding skills, you’ll also
become a better manager by observing
how things you might have heard only
in a boring software engineering lec-
ture actually work in large, real-world
projects.

Later on, hopefully, you’ll also con-
tribute. Despite the size and complexity
of some large open source development
efforts, most projects are still typically
too light on process, so it’s relatively
easy for somebody with time and ideas
to make a contribution in this area. Ini-
tially, this can be simply a skunk works

subproject you launch on your own: a
framework for unit or regression test-
ing, a bug-finding tool, or a more effi-
cient release mechanism. As your idea
is proven on the field and you gain re-
spect from other developers, chances
are that the project’s community will
officially adopt your pet venture.

Cashing in
Proponents of psychological egoism

maintain that we’re always motivated by
self-interest, even when we behave altru-
istically: deep down we seek the better
feeling we derive from our acts. This ar-
gument has been criticized as circular
and nonfalsifiable. Fortunately, when
working on open source projects, we
won’t have to entangle ourselves in this
logic: there’s nothing wrong with ad-
vancing professionally while helping
worthwhile projects. Nobody (yet) has
promised eternal life through code
churning.

We already saw how participation in
open source projects can make us better
programmers, system administrators,
and managers. As contributors to open
source projects, we can also often gain a
significant edge in interviews: “I see
you’re using Firefox as your browser.
You know, I’ve implemented the hyphen-
ation functionality in the text-rendering
module.” Developers with commit
privileges in certain high-profile open
source projects often find themselves
in a seller’s market. Demand for their
skills typically outstrips the available
supply, and therefore they can com-
mand better employment terms. Never-
theless, in the end, the best reward we
gain from our participation in open
source projects is the joy of contribut-
ing to work that could improve millions
of people’s lives.

Diomidis Spinellis is an associate professor in the De-
partment of Management Science and Technology at the Athens
University of Economics and Business and the author of Code
Quality: The Open Source Perspective (Addison-Wesley, 2006).
Contact him at dds@aueb.gr.

