10015 0f the frade

Editor: Diomidis Spinellis

Language

62

Athens University of Economics and Business = dds@aueb.gr

A language that doesn’t have everything is actually easier to program in than some that do.

omputer languages fascinate me. Like

a living person, each one has its own

history, personality, interests, and

quirks. Once you’ve learned one, you

can use it again after years of neglect,

and it’s like reconnecting with an old
friend: you can continue discussions from
where you left off years before. For a task I re-
cently faced, I adopted a lan-
guage [hadn’t used for 15 years,
and I felt enlightened.

I don’t think there’s one lan-
guage suitable for all tasks, and
probably there won’t ever be
one. In a typical workweek, I
seldom program in fewer than
three different languages. The
most difficult question I face
when starting a new project is
what language to use. Factors I balance when
choosing a programming language are program-
mer productivity, maintainability, efficiency,
portability, tool support, and software and hard-
ware interfaces.

Often, one of these factors is decisive and
leaves little room for choice. If you have to
squeeze your interrupt-driven code into a
microcontroller’s 1,024 bytes of memory, as-
sembly language or maybe C is the only game in
town. If you’re going to interface with a Java-
based application server, then you write in Java.
Sometimes tradition plays an important role.

IEEE SOFTWARE Published by the IEEE Computer Society

—Dennis M. Ritchie

Systems code, like operating systems, device dri-
vers, and utility programs, is typically written in
C. Following this tradition means that the code
will mesh well with its surrounding environ-
ment and won’t impose on it onerous require-
ments for libraries and runtime environments.

At other times, the choice of programming
language is a fine balancing act. I find the power
of C++ and its standard template library amaz-
ing: the combination provides me with extreme
efficiency and expressiveness—at a price. The
language is large and complex; after 15 years of
C++ programming, I'm still often puzzled by the
compiler’s error messages, and I routinely pro-
gram with a couple of reference books by my
side. Time spent looking up an incantation is
time not spent programming.

Modern object-oriented languages such as
Java and C# are more orthogonal and hide
fewer surprises for the programmer, although
the inevitable accumulation of features makes
this statement less true with every new version
of each language. It looks as if Lehman’s law of
software evolution (“as a program is evolved its
complexity increases”) haunts us on every
front. On the other hand, sometimes you just
can’t afford Java’s memory space overheads. I
recently wrote a program that manipulated half
a billion objects. Its C++ implementation re-
quired 3 Gbytes of real memory to run. A Java
implementation would easily need that amount
of memory just to store the objects’ housekeep-
ing data. I couldn’t afford the additional mem-
ory space, and I'm sure even our more gener-

0740-7459/06/$20.00 © 2006 IEEE

TOOLS OF THE TRADE

ously funded CERN colleagues feel the
same way when facing the 1 petabyte
per second data stream coming from
their large hadron collider experiment.

However, the situations I described
are outliers. In many more cases, I find
myself choosing a programming lan-
guage on the basis of its surrounding
ecosystem. If I'm targeting a Windows
audience, the default availability of the
NET framework on all modern Win-
dows systems makes the platform attrac-
tive. Conversely, if the application must
ever run on any other system, using the
NET framework will make porting it a
nightmare. Third-party libraries also
play an important role here.

Nowadays, we often build applica-
tions by gluing together many libraries.
I recently calculated that, on average,
each of the 20,000 applications ported
to the FreeBSD system depends on 1.7
third-party libraries not available on the
system’s default installation; one appli-
cation depends on 38 different libraries.
So, for example, if your application re-
quires support for 3D rendering, Blue-
tooth communications, the creation of
PDF documents, an interface to a par-
ticular relational database management
system, and public key cryptography,
you might find that these facilities are
available only for a particular language.

When efficiency, portability, and li-
brary availability don’t force a lan-
guage on me, the next decisive factor is
programmer productivity.

Interestingly, 've found that the same
language features can promote or reduce
productivity, depending on the work’s
scope. For small tool-type programs, I
prefer a language that sustains program-
mer abuse without complaint. When I
want to put together a program or a
one-line command in a hurry, I appreci-
ate that Perl and the Unix shell scripting
facilities don’t require me to declare
types and split my code into functions
and modules. Other programmers use
Python and Ruby in the same way.

However, for programs that will
grow large, be maintained by a team, or
be used where errors matter a lot, I want
a language that enforces programming

discipline. One feature I particularly ap-
preciate is strict static typing. Type er-
rors that the compiler catches are bugs
my users won’t face. Language support
for splitting programs into modules and
hiding implementation details is also
important. If the language (or the cul-
ture of developing in that language) en-
forces these development traits, so much
the better. So, even though you can
write well-structured, 100,000-line pro-
grams in both Perl and Java, the disci-
pline required to get this right in Perl is
an order of magnitude higher than that
required in Java, where even rookie pro-
grammers routinely split their code into
classes and packages.

I also pay attention to a language’s
supporting environment. Nowadays, a
programmer’s productivity in a given
language often depends on using an in-
tegrated development environment.
You really wouldn’t want to approach
some tasks, such as developing a pro-
gram’s GUI layout, without an appro-
priate IDE. Some colleagues have be-
come attached to a particular IDE in
the same way I’'m clinically dependant
on the vi editor. So, choosing a lan-
guage often involves selecting one that
a particular IDE supports.

Sometimes, a program’s application
domain will favor a specific language’s
expressive style. The three approaches
here involve using an existing domain-
specific language (DSL), building a new
one, or adopting a general-purpose de-
clarative language.

Adopting an existing DSL is often a
no-brainer: if you want to get some
figures from a database, you might
write SQL queries; if you want to con-
vert an XML document into a report,
you should try out XSLT. Building a
special-purpose language might sound
daunting, but it’s not that hard if you
take the right shortcuts. And, it can be
a tremendous productivity booster.
Fifteen years ago, I designed a simple
line-oriented DSL to specify the para-
meters of a CAD system’s objects. In-
stead of designing an input window
layout for each group, you simply
specify declaratively what the user

should see and manipulate. So, the sys-
tem’s initial 150 parameters have ef-
fortlessly swelled over the years to
2,400, surviving a port to a different
GUI platform intact.

When I recently set out to design a
way to specify complex financial instru-
ments, [first designed a DSL. However,
the more I worked on the problem, the
more [realized that declarative lan-
guages such as Prolog, Lisp, ML, and
Haskell already had many of the fea-
tures I wanted—list and tree manipula-
tion, for example. After expressing a
small subset of the problem in several
of these languages, 1 singled out
Haskell, a language 1 had to write a
compiler for as an undergraduate stu-
dent. It seemed to offer a concise way to
express everything I wanted and a no-
frills but remarkably effective develop-
ment environment.

My biggest surprise came when I
started testing the code 1 wrote. Most
programs worked correctly the first time
on. I attribute this to three factors.
Haskell’s strong typing filtered out most
errors when I compiled my code. Fur-
thermore, the language’s powerful ab-
stractions let me concisely express what
I wanted, limiting the scope for errors
(research has shown that the errors in a
program are roughly proportional to its
size). Finally, as a pure functional lan-
guage, Haskell doesn’t let expressions
have side effects, and this forced me to
split my program into many simple,
easy-to-verify functions.

ver the years, many friends and
books have prompted me to evaluate
the use of a functional language for
implementing domain-specific function-
ality. As I continue to add Haskell func-
tions to my program, I can see how
choosing the appropriate programming
language can make or break a project. &

Diomidis Spinellis is an associate professor in the De-
partment of Management Science and Technology at the Athens
University of Economics and Business and the author of Code
Quality: The Open Source Perspective (Addison-Wesley, 2006).
Contact him at dds@aueb.gr.

July/August 2006 1EEE SOFTWARE 63

