
9 8 I E E E S O F T W A R E P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y 0 7 4 0 - 7 4 5 9 / 0 6 / $ 2 0 . 0 0 © 2 0 0 6 I E E E

tools of the trade
E d i t o r : D i o m i d i s S p i n e l l i s ■ A t h e n s U n i v e r s i t y o f E c o n o m i c s a n d B u s i n e s s ■ d d s @ a u e b . g r

T
he testing, diagnostic, and repair equip-
ment of many professions is horrendously
expensive. Think of logic analyzers, CAT
scanners, and dry docks. For us, the cost
of debuggers and logging frameworks is
minimal; some are even free. All we need

to become productive is to invest some time and
effort into learning how to use these tools in the
most efficient and effective ways.

Assuming that the bug-finding systems I
discussed in my last column
(Mar./Apr. 2006) have given
our program’s code a clean bill
of health, our next alternatives
for productively pinpointing
errors that have crept into our
code are debuggers or logging
instrumentation. These tools
help us locate a bug and then
verify our hypotheses on
what’s going wrong. As you

might expect, we’ll need to adopt an appro-
priate strategy and master the corresponding
techniques to get the best out of these tools.

Debugging strategies
The most efficient debugging strategy is to

go bottom-up: we start from the symptom and
look for the cause. The symptom might be a
memory access violation (for example, the
dereferencing of a NULL pointer), an endless
loop, or an uncaught exception. A debugger
will typically let us take a snapshot of the pro-
gram at the point where the symptom oc-
curred. From that snapshot, we can examine

the program’s stack frame: the sequence of
function or method invocations that led to the
problem code’s execution. At the very least, this
will give us an accurate picture of our pro-
gram’s runtime behavior. We can also examine
the values of variables at each level of the stack
frame to really understand what made our pro-
gram go belly-up.

Unfortunately, we can’t always adopt a bot-
tom-up strategy. This happens when we can’t
precisely tie the bug’s symptom to a debugger
event. Our program might cause a problem in
another application, or a variable’s contents
could be wrong for reasons we can’t explain. In
such cases, top-down is the name of the game.
Debuggers let us walk through the code, step-
ping over or into functions and methods. When
we debug top-down, we initially step over bod-
ies of code we consider irrelevant, narrowing
our search as we near the problem’s manifesta-
tion. This strategy requires patience and persis-
tence. Often we step over a crucial function
and find ourselves repeating the search aiming
to step into the function the next time around.
This process, while tiring, will sooner or later
produce results.

If we don’t trust the compiler or we can’t
access the program’s source code, we might
have to debug it at the assembly code level.
What I’ve found over the years is that assem-
bly code is a lot less intimidating than it ap-
pears. Even if we don’t know the processor’s ar-
chitecture, with a few educated guesses and a
bit of luck we can often decipher the instruc-
tions needed to pinpoint the problem.

Debuggers and Logging
Frameworks

Diomidis Spinellis

As soon as we started programming, we found to our surprise that it wasn’t as easy to get
programs right as we had thought. Debugging had to be discovered.

— Maurice Wilkes, 1949

M a y / J u n e 2 0 0 6 I E E E S O F T W A R E 9 9

TOOLS OF THE TRADE

Debugging techniques
Stack frame printouts and stepping

commands are basic, indispensable de-
bugging tools, but more powerful com-
mands can help us deal with stickier
problems.

Code and data breakpoints
A code breakpoint lets us stop the

program’s execution at a specific line.
We can use these to expedite a top-
down bug search by placing a break-
point before the location where we
think the problem lies. This breakpoint
acts as a bookmark for us to return to
and examine the program’s operation in
more detail.

Less known, but no less valuable, are
data breakpoints—also known as
watchpoints. Many modern processors
provide hardware support that will in-
terrupt a program’s execution when the
code accesses the contents of specified
memory locations. Data breakpoints
leverage this support, letting us specify
that the program’s execution will stop
when its code reads or writes a variable,
an array, or an object. However, debug-
gers that implement such commands
without hardware support slow down
the program’s execution to a crawl, ren-
dering this command almost useless
(Java tool builders take note!).

Live, postmortem, and remote
debugging

Although the typical setup involves
starting the misbehaving program under
a debugger, other debugging options can
also help us escape a tight corner.

Consider nonreproducible bugs
(also known as Heisenbugs because
they make a program appear as if it’s
operating under the spell of Heisen-
berg’s uncertainty principle). We can
usually pinpoint these by debugging a
program after it’s crashed. On typical
Unix systems, crashed programs will
leave behind an image of their mem-
ory—the core dump. By running a de-
bugger on this core dump we get a
snapshot of the program’s state at the
time of the crash. Windows, on the
other hand, offers us the possibility to
launch a debugger immediately after a
program crashes. In both situations,

we can look at the crash’s location and
examine the values the variables had at
the time. If the program hasn’t crashed
but is acting strangely, we can attach a
debugger to the process and examine
its operation from that point on using
the debugger’s commands.

Another class of applications that are
difficult to debug are those with an in-
terface that’s incompatible with the de-
bugger’s. Embedded systems, operating
system kernels, games, and applications
with a cranky GUI fall in this category.
Here, the solution is remote debugging.
We run the process under a debugger
but interact with the debugger’s inter-
face on another system, connected
through the network or a serial inter-
face. This leaves the target system al-
most undisturbed but lets us issue de-
bugging commands and view their
output from our debugging console.

The logging controversy
Instructions in the program’s code

that generate logging and debugging
messages let us inspect a program’s be-
havior without a debugger. Some believe
that only people who don’t know how to
use a debugger use logging statements.
This might be true in some cases, but
logging statements also offer several ad-
vantages over a debugger session. In fact,
the two approaches are complementary.

First, a logging statement’s location
and output are program specific. So, we
can place it permanently at a strategic
location, and it will output exactly the
data we require. A debugger, as a gen-

eral purpose tool, requires us to follow
the program’s control flow and manu-
ally unravel complex data structures.

Moreover, the work we invest in a
debugging session has only ephemeral
benefits. Even if we save our setup for
printing a complex data structure in a
debugger script file, it still wouldn’t be
visible or easily accessible to other peo-
ple maintaining the code. I have yet to
encounter a project that distributes de-
bugger scripts with its source code. On
the other hand, because logging state-
ments are permanent, we can invest
more effort in them than we could jus-
tify for a fleeting debugging session. We
can format their output so that it will
increase our understanding of the pro-
gram’s operation—and our debugging
productivity.

Finally, logging statements are inher-
ently filterable. Many logging environ-
ments, such as the Unix syslog library,
Java’s util.logging framework, and the
log4j Apache logging services (http://
logging.apache.org), offer facilities for
identifying a given log message’s impor-
tance and domain. More impressively,
Apple’s OS X logging facility stores log
results in a database and lets us run so-
phisticated queries on them. We can thus
filter messages at runtime to see exactly
those that interest us. Of course, we reap
these benefits only when we correctly use
an organized logging framework, not
simple println statements.

A s you can see, our toolbag is full of
useful debugging tools. Being an
expert user of a debugger and a

logging framework is a sign of profes-
sional maturity. So, the next time you
encounter a bug, select the appropriate
tool and squash it!

Diomidis Spinellis is an associate professor in the De-
partment of Management Science and Technology at the Athens
University of Economics and Business and the author of Code
Quality: The Open Source Perspective (Addison-Wesley, 2006).
Contact him at dds@aueb.gr.

Being an expert
user of a debugger

and a logging framework
is a sign of professional

maturity.

