
1 0 0 I E E E S O F T W A R E P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y 0 7 4 0 - 7 4 5 9 / 0 6 / $ 2 0 . 0 0 © 2 0 0 6 I E E E

tools of the trade
E d i t o r : D i o m i d i s S p i n e l l i s ■ A t h e n s U n i v e r s i t y o f E c o n o m i c s a n d B u s i n e s s ■ d d s @ a u e b . g r

I
t’s said that real computer scientists don’t
program in assembler; they don’t write in
anything less portable than a number two
pencil. Joking aside, at the end of the
1970s, the number of nonstandard lan-
guages and APIs left most programs tied

to a very specific and narrow combination of
software and hardware. Entire organizations
were locked in for life to a specific vendor, un-

able to freely choose the hard-
ware and software where their
code and data would reside.
Portability and vendor inde-
pendence appeared to be a far-
away, elusive goal.

Fortunately, several stan-
dardization efforts pinned down
languages like C, C++, and SQL
as well as interfaces like Posix
and ODBC. So, if you’re careful

and not too ambitious, you can now implement
large systems that will run on several different
platforms, such as Windows, Linux, and Mac
OS X. The Apache Web server, Perl interpreter,
and TeX typesetting system are prominent ex-
amples of this reality. Furthermore, Java—with
its standardized application binary interface and
rich set of class libraries—is now conquering
many new portability fronts. I routinely move
Java programs, Ant build files, and HSQLDB
scripts between different operating systems and
processor architectures without changing an
iota.

However, these victories, impressive as they
are, shouldn’t distract us from the fact that

we’re fighting the last war. Nowadays, a soft-
ware system’s program source code makes up
only a small part of its assets stored as bits—
taking up a larger percentage are specifications,
design diagrams, application server deploy-
ment scripts, build rules, version history, docu-
mentation, and regression tests. Figure 1 shows
the relative size of four asset classes that I was
able to easily measure in the FreeBSD operating
system. The figure shows that the source code
is actually third in size after the version control
system’s historical data and the outstanding
and solved issues database. (The different as-
sets shown in the figure are stored in textual
format, so their sizes are directly comparable.)
Notice that only the source code and the docu-
mentation—less than 25 percent of the total as-
sets—are relatively portable between different
tools. The version history and the issues are
stored in tool-specific formats that hold the
project hostage to their corresponding tools.

Where do you stand?
How is the situation in your organization?

Can you easily move your design diagrams
from one UML-based tool to another, change
the repository where your specifications are
stored, run your regression tests on a different
platform, or switch to a different configuration
management system? Unless your organization
still uses paper records for these tasks (in which
case your problems are in a totally different
league), chances are you dread even the
thought of changing the tools you use.

Yes, in modern organizations, tool flexibil-

Project Asset Portability
Diomidis Spinellis

J a n u a r y / F e b r u a r y 2 0 0 6 I E E E S O F T W A R E 1 0 1

TOOLS OF THE TRADE

ity is becoming increasingly important.
We can’t afford to have a project’s as-
sets locked in proprietary data formats:
software projects often change hands
through corporate acquisitions and re-
organizations, and we’re increasingly
outsourcing development. If a project’s
new home lacks the corresponding
tools or engineers trained to use them,
development will most likely continue
on the lowest common denominator—
the source code. All effort put into spec-
ifications, design, configuration man-
agement, and testing will be lost. A
similar thing happened in the previous
era of nonstandard languages. Organi-
zations sometimes had to run program
binaries on top of thick layers of emu-
lation because the new hardware lacked
the compilers and tools required for
working with the source code. Those
organizations faced a rude shock when
they had to verify and fix their software
for year-2000 compliance.

An open market
The portability of a project’s non-

source code assets means more than al-
lowing those assets to move freely be-
tween different organizations and
developers. Portability also means that
a marketplace for tools can evolve
without the artificial restrictions of the
vendor lock-ins imposed by incompati-
ble data formats and associated switch-
ing costs. Such an environment would
let different tools compete on their ac-
tual technical merits, without the artifi-
cially cozy protection of their installed
base’s captive audience. Furthermore,
engineers could experiment with differ-
ent tools to evaluate their merits, and,
hopefully, exploit interoperability, us-
ing multiple tools to profit from their
complementary strengths. Competition
might also lower the cost of the corre-
sponding tools, making them accessible
to a wider community of users.

Remember the Unix wars? Many,
now defunct, Unix vendors damaged
themselves and their entire industry as
they fiercely battled to lock in their
customers with proprietary extensions.
We don’t want the software tool indus-
try to suffer a similar ordeal.

Realizing the importance of the porta-

bility of a project’s noncode assets just
gets us out the door. Our first step
should then be to inventory those as-
sets to appreciate the problem’s extent.
Next, we should devise and standard-
ize simple, powerful, and comprehen-
sive formats for moving these assets be-
tween different tools. To minimize the
effect of vendors’ “embrace, extend,
and extinguish” tactics, we should or-
ganize interoperability exhibitions,
where vendors could compete on how
well their tools work with each other.
We should aim to make moving project
data in its portable format as painless
as editing the same text file with two
different editors. As a counterexample,
I understand that the interoperability
of UML design tools through XMI
(XML Metadata Interchange) is woe-
fully inadequate right now—we must
do better than that.

W on’t the standardization I’m pro-
posing put an end to tool innova-
tion? By the time you read this

column, Marc Rochkind’s paper, “The
Source Code Control System,” will be
30 years old. However, modern config-
uration management systems don’t dif-
fer radically from Rochkind’s SCCS. Is-
sue management systems are also
competing on trivialities. Let’s face it: a

whole generation of tools has matured.
So, it’s high time to end gratuitous dif-
ferences in the project’s asset data
schema and interchange format and let
the tools compete on stability, usability,
performance, and data manipulation
capabilities. Databases, compilers, and
Web browsers have all flourished un-
der a regime of standardized interfaces;
it’s time to give our tools the same
chance.

Diomidis Spinellis is an associate professor in the De-
partment of Management Science and Technology at the Athens
University of Economics and Business and the author of Code
Reading: The Open Source Perspective (Addison-Wesley, 2003).
Contact him at dds@aueb.gr.

Issues database
(GNATS)

Source code
(C/C++)

Documentation
(troff, DocBook)

Version history
(CVS)

Figure 1. Relative size of different
assets in the FreeBSD operating
system project.

FUTURE TOPICS:

The Business of
Software Engineering

Software Inspections

Usability

Internationalization

FUTURE TOPICS:

The Business of
Software Engineering

Software Inspections

Usability

Internationalization

IEEE

www.computer.org/software

Visit us
on the
web

Visit us
on the
Web

