
0 7 4 0 - 7 4 5 9 / 0 5 / $ 2 0 . 0 0 © 2 0 0 5 I E E E N o v e m b e r / D e c e m b e r 2 0 0 5 I E E E S O F T W A R E 9

tools of the trade
E d i t o r : D i o m i d i s S p i n e l l i s ■ A t h e n s U n i v e r s i t y o f E c o n o m i c s a n d B u s i n e s s ■ d d s @ a u e b . g r

L
ine-oriented textual data streams are the
lowest useful common denominator for a
lot of data that passes through our hands.
We use such streams to represent pro-
gram source code, Web server log data,
version control history, file lists, symbol

tables, archive contents, error messages, profil-
ing data, and so on. For many routine, everyday
tasks, we might be tempted to process the data
using a “Swiss army knife” scripting language

such as Perl, Python, or Ruby.
However, doing that often re-
quires writing a small, self-con-
tained program and saving it
into a file. By that point, we’ve
sometimes lost interest in the
task and end up doing the work
manually, if at all. Often, it’s
more effective to combine Unix
toolchest programs into a short
and sweet pipeline that we can

run from our shell’s command prompt. With
modern shell command-line editing facilities, we
can build our command bit by bit, until it molds
into exactly the form that suits us. Nowadays,
many different systems—including GNU/Linux,
Mac OS X, and Microsoft Windows—offer the
original Unix tools preinstalled or as free down-
loads, so there’s no excuse for not adding this
approach to your arsenal.

Many one-liners that you’ll build around
the Unix tools follow a pattern that goes
roughly like this: data fetching, selection, pro-
cessing, and summarization. You’ll also need
to apply some plumbing to these parts. Jump
in to get a quick tour of the facilities.

Getting the data
Most of the time, your data will be text that

you can feed directly to a tool’s standard input.
If this isn’t the case, you’ll need to adapt your
data. If you’re dealing with object files, try a
command like nm (Unix), dumpbin (Windows),
or javap (Java) to dig into them. If you’re
working with files grouped into an archive, a
command like tar, jar, or ar will list the
archive’s contents. If your data comes from a
(potentially large) collection of files, find can
locate those that interest you. Then again, to get
your data over the Web, use wget. You can also
use dd (and the special file /dev/zero), yes, or
jot to generate artificial data, perhaps to run a
quick benchmark. Finally, to process a com-
piler’s list of error messages, redirect its stan-
dard error to its standard output; the incanta-
tion 2>&1 will do the trick.

I’ve not covered many other cases, includ-
ing relational databases, version control sys-
tems, mail clients, office applications, and so
on. Keep in mind that you’re unlikely to be the
first to need the application’s data converted to
a textual format, so the tool you need proba-
bly already exists. For example, my Outwit
tool suite (www.spinellis.gr/sw/outwit) can
convert into a text stream data coming from
the Windows clipboard, an ODBC (open data-
base connectivity) source, the event log, or the
registry.

Selection
Given the textual data format’s generality,

you’ll frequently have more data than you need.
You might want to process only some parts of

Working with Unix Tools
Diomidis Spinellis

A successful [software] tool is one that was used to do something undreamed of by its author.
— Stephen C. Johnson

1 0 I E E E S O F T W A R E w w w. c o m p u t e r. o r g / s o f t w a r e

TOOLS OF THE TRADE

each row or only a subset of the rows.
To select a specific column from a line
consisting of elements separated by
spaces or another field delimiter, use
awk with a single print $n command.
If your fields have a fixed width, you can
separate them using cut. And, if your
lines are not neatly separated into fields,
you might write a regular expression for
a sed substitute command to isolate the
desired element.

The workhorse for obtaining a sub-
set of the rows is grep. Specify a regu-
lar expression to get only the rows that
match it and add the -v flag to filter out
rows you don’t want to process. Use
fgrep with the -f flag if the elements
you’re looking for are fixed and stored
in a file (perhaps generated in a previous
processing step). If your selection crite-
ria are more complex, you might ex-
press them in an awk pattern expres-
sion. Many times you’ll find yourself
combining several of these approaches.
For example, you might use grep to get
the lines that interest you, grep -v to fil-
ter out some noise from your sample,
and finally awk to select a specific field
from each line.

Processing
You’ll find that data processing fre-

quently involves sorting your lines on a
specific field. The sort command sup-
ports tens of options for specifying the
sort keys, their type, and the output or-
der. Having your results sorted, you
could then count how many instances of
each element you have. The uniq com-
mand with the -c (count) option will do

the job here; you might also postprocess
the result with another sort, this time
with the -n flag specifying a numerical
order, to find out which elements appear
most frequently. In other cases, you
could compare results between different
runs. You can use diff if the two runs
generate results that should be the same
(perhaps a regression test’s) or comm if
you want to compare two sorted lists.
Again, you’ll handle more complex tasks
using awk.

Summarizing
In many cases, the processed data is

too voluminous to be useful. For exam-
ple, you might not care which symbols
are defined with the wrong visibility in
your program, but you might want to
know how many exist. Surprisingly,
many problems involve simply count-
ing the processing step’s output using
the humble wc (word count) command
and its -l (count lines) flag. If you want
to know the top or bottom 10 elements
of your results list, you can pass your
list through head or tail. To format a
long list of words into a more manage-
able block that you can paste into your
code, use fmt (perhaps run after a sed
substitution command tacks a comma
after each element). Also, for debugging
purposes, you might initially pipe the
result of intermediate stages through
more or less to examine it in detail.
As usual, use awk when these ap-
proaches don’t suit you; a typical task
involves summing up a specific field
with a command such as sum += $3.

Plumbing
All the wonderful building blocks

we’ve described are useless without some
way to glue them together. For this, you’ll
use the Bourne shell’s facilities. First and
foremost comes the pipeline (|), which
lets you send one processing step’s output
as input to the next one. In other cases,
you might want to execute the same com-
mand with many different arguments.
For this, you’ll pass the arguments as in-
put to xargs. A typical pattern involves
obtaining a list of files using find and
processing them using xargs. So com-
mon is this pattern that, to handle files
with embedded spaces in them, both

All the wonderful
building blocks we’ve
described are useless

without some way
to glue them together.

TOOLS OF THE TRADE

commands nowadays support an argu-
ment (-print0 and -0) to have their
data terminated with a null character in-
stead of a space. If your processing is
more complex, you can always pipe the
arguments into a while read loop (amaz-
ingly, the Bourne shell lets you pipe data
to and from all its control structures).
When all else fails, don’t shy away from
using a couple of intermediate files to jug-
gle your data.

Putting it all together
The following command will exam-

ine all Java files located in the directory
src and print the 10 files with the high-
est number of occurrences of a method
call to substring:

find src -name ’*.java’ -print |

xargs fgrep -c .substring |

sort -t: -rn -k2 |

head -10

The pipeline sequence will first use
find to locate the Java files and apply
fgrep to them, counting (-c) the oc-
currences of .substring. Then, sort
will order the results in reverse numer-
ical order (-rn) according to the sec-
ond field (-k2) using : as the separator
(-t:), and head will print the top 10
files.

A ppalled? Confused? Disheartened?
Don’t worry. It took me four itera-
tions and two manual lookups to

get the above command exactly right,
but it was still much faster than count-
ing by hand or writing a program to do
the counting. Every time you concoct a
pipeline, you become a little better at it.
Before you know it, you’ll become the
hero of your group: the one who knows
the commands that can do magic.

Diomidis Spinellis is an associate professor in the De-
partment of Management Science and Technology at the Athens
University of Economics and Business and the author of Code
Reading: The Open Source Perspective (Addison-Wesley, 2003).
Contact him at dds@aueb.gr.

www.sei.cmu.edu

SENIOR MEMBERS
TECHNICAL STAFF

The Software Engineering Institute (SEI) is a federally funded
research and development center and a college-level unit of
Carnegie Mellon University. The sustained growth of our
Software Architecture Technology (SAT) Initiative has
created the following opportunities:

Software
Architecture Research

Position #1201
Working with SEI software architecture experts, selected
candidates will conduct research in the areas of architecture
design, reconstruction, and/or self-healing architectures;
participate in the development of an expert architectural
design assistant; and author publication-quality technical
reports.

This position requires a PhD in a software engineering related
field; 5+ years of direct system experience; relevant technical
publications; demonstrated skill in real-time performance,
reliability, security, or other quality attributes; and technical
currency in leading-edge software technology.

Software Architecture
Life Cycle Integration

Position #1205
Providing technical leadership in the development and
transition of software architecture methods across the life-
cycle, selected candidate will participate in the development
and integration of architecture-centric life cycle practices;
deliver courses in software architecture; and author
publication-quality technical reports.

This position requires an M.S. in a software engineering
related field; 8+ years of direct systems experience as a
practitioner and/or educator in software engineering;
technical currency in leading-edge software technology.

We offer excellent compensation, comprehensive benefi ts
and the opportunity to work in a collegial results-oriented
environment. Candidates interested in joining our team
should go to http://hr.web.cmu.edu/prospective to create
an applicant profile and apply online. AA/EOE

