
1 0 8 I E E E S O F T W A R E P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y 0 7 4 0 - 7 4 5 9 / 0 5 / $ 2 0 . 0 0 © 2 0 0 5 I E E E

tools of the trade
E d i t o r : D i o m i d i s S p i n e l l i s ■ A t h e n s U n i v e r s i t y o f E c o n o m i c s a n d B u s i n e s s ■ d d s @ a u e b . g r

S
ane programmers don’t write produc-
tion code without the help of an editor
and an interpreter or a compiler, yet
I’ve seen many software projects limp-
ing along without using a version con-
trol system. We can explain this con-

trast if we think in terms of the increased
start-up costs and delayed gratification associ-
ated with adopting a VCS. We humans typi-
cally discount the future, and therefore imple-

menting version control in a
project appears to be a fight
against human nature. It’s true
that you can’t beat the produc-
tivity boost that compilers and
editors provide, but four
decades after punched-card
programming in assembly lan-
guage has gone out of fashion,
we must now look elsewhere
for our next efficiency gains.

And if you or your project isn’t using a VCS,
adopting one might well be the single most im-
portant tooling improvement you can undertake.

Procurement and installation
Acquiring a VCS need not be expensive;

depending on the operating system you’re us-
ing, you might in fact find out that one is al-
ready installed and ready to run—probably
CVS (Concurrent Versions System) or RCS
(Revision Control System). If not, you have
the luxury of a wide choice. If you’re on a
shoestring budget, you can safely pick a free
open source system: multimillion-line projects
have relied on such systems for more than a

decade. If you can shell out some cash, you’ll
find that several commercial systems offer ad-
ditional features and a more polished inter-
face. Installing a VCS typically also involves
setting up a repository, the location where the
definitive version of your source code and its
changes will reside. Be sure to include the
repository in your scheduled backups.

Life with a VCS
Normal software development with a VCS is

only marginally more complicated than without
it. Initially, you start out a new project or im-
port your existing project into the VCS. From
then on, to work, you check out a version of the
project into your private working directory.
Every time you’re happy with a change you’ve
made—like a bug fix or the addition of a new
feature—you commit your change to the repos-
itory, along with an explanatory message. (See
this issue’s Glossary for more VCS terminol-
ogy.) Also, whenever you feel in the mood for
some excitement, you synchronize, or update,
your private version of the software with the
changes your colleagues have committed. This
action will provide you with endless hours of
fun as you battle against your colleagues’ mis-
takes but also ensures that you’re all working
on roughly the same source code base. Finally,
when you roll out a release, you tag, or label, all
files with the release’s name. And that’s basi-
cally it.

The goodies
Having convinced you that adopting a VCS

isn’t a Herculean task, let’s briefly review some

Version Control Systems
Diomidis Spinellis

A source code control system [is] a giant UNDO key—a project-wide time machine.
— Andy Hunt and Dave Thomas

S e p t e m b e r / O c t o b e r 2 0 0 5 I E E E S O F T W A R E 1 0 9

TOOLS OF THE TRADE

of the benefits you’ll reap. First of all,
if you’re working in a team, you’ll stop
stepping on each other’s toes by writing
over other people’s code. If both you
and Mary change the same file, the sys-
tem will either unobtrusively merge
your changes or warn you that these
are conflicting.

In addition, every time you commit
a change, you create a new version of
the corresponding files. With the ver-
sion information that the VCS stores,
you can access each file’s history of
changes, see the differences between
versions of the same file, and see who
changed which lines when. Now that
you can always go back to a specific
version of the file, you don’t need to
comment out code blocks “in case
they’re needed in the future”: your
older version of the code is safely
stored in the VCS repository. And, in
many VCS implementations, you can
get an annotated listing of the file in-
dicating the developer and date corre-
sponding to each line’s most recent
change. The repository also acts as the
source of truth regarding the files
stored in it. Source code distribution
simply involves obtaining or updating
a private workspace from the VCS
repository. Once you label a project’s
files for a given release, you can use
the release’s name to obtain again an
exact copy of that historic file set.

Furthermore, you can split devel-
opment into different branches, each
branch for example tracking the fixes
associated with a given software re-
lease. You can then easily obtain the
file versions associated with a branch
and apply the same fix to multiple
branches. Finally, with all the project’s
history neatly stored in the repository,
you can mine the VCS data to see how
you’re doing: How many lines were
changed for version 3.1? Which are
the most and least productive days of
the week? Which developers work on
the same files?

Best practices
Even if you’ve already been using a

VCS for some time, you might be able
to squeeze more juice out of it. Here are
some ideas:

■ Put everything under version control.
Version control isn’t only for source
code; use it for your build scripts,
help files, design notes, documenta-
tion, translated messages, GUI ele-
ments, and so on—everything that
makes up your project.

■ Use a VCS on your personal proj-
ects. You don’t have to work on a
team to adopt a VCS. Consider us-
ing one for your personal files,
such as your hobby projects, your
Web page, or your phone book.
Some developers even use a VCS to
synchronize their home directories
among different hosts.

■ Think carefully about file naming
and organization. Some VCSs get
confused when a file name changes,
offering you the unattractive choice
of losing either the file’s revision his-
tory or the ability to retrieve older
versions of the software with the
correct file name. So, it makes sense
to adopt from the start file names
and a directory organization that will
remain relatively stable throughout
the project’s life.

■ Perform a separate commit for
every change. Don’t lump multiple

changes into a single commit. Sepa-
rating changes lets you see precisely
which lines the change affected and
apply the change selectively to other
branches. This rule is especially im-
portant if a change involves global
stylistic changes, which will affect
thousands of code lines.

■ Label all releases. Whenever you re-
lease the software (even to the test-
ing group next door), label it. This
provides everyone with a concrete
name to associate with bug reports
and their fixes.

■ Establish and follow policies and
procedures. VCS actions can affect
all developers. So, you’ll benefit from
clear policies covering developer eti-
quette or the content of commit mes-
sages and from procedures covering
heavy operations such as branching
and releases.

$Id: tot-5.rtf 1.4 2005/07/05 15:49:38
dds Exp dds $

Diomidis Spinellis is an associate professor in the De-
partment of Management Science and Technology at the Athens
University of Economics and Business and the author of Code
Reading: The Open Source Perspective (Addison-Wesley, 2003).
Contact him at dds@aueb.gr.

