
7 0 I E E E S O F T W A R E P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y 0 7 4 0 - 7 4 5 9 / 0 5 / $ 2 0 . 0 0 © 2 0 0 5 I E E E

tools of the trade
E d i t o r : D i o m i d i s S p i n e l l i s ■ A t h e n s U n i v e r s i t y o f E c o n o m i c s a n d B u s i n e s s ■ d d s @ a u e b . g r

I
n computing, we often solve a complex
problem by adding another level of indi-
rection. For example, in Unix file systems,
an index node, or inode, data structure lets
the operating system allocate files concur-
rently and sparsely while still providing an

efficient random-access capability. When we
want to customize large, complex systems or

express fluid, rapidly changing
requirements, we frequently
add a scripting layer on top of
the corresponding system. Back
in 1962 to 1963, Dan Murphy
did this when he developed his
TECO (text editor and correc-
tor) editor on the Digital Equip-
ment Corp.’s PDP-1; its com-
mand language also doubled as
an arcane (to put it politely)

macro language.
Twenty years later, adding a scripting-lan-

guage interface to existing applications (often
written in C) was all the rage. Lotus 123 sup-
ported macro commands, Framework had the
FRED (frame editor) language, and you could
program AutoCAD and Emacs in a form of Lisp.
On the Unix platform, administrators wrote so-
phisticated sendmail configuration files to bridge
email networks—which were then disparate and
mutually incompatible. John Ousterhout com-
pleted the picture by developing Tcl/Tk as a
general-purpose scripting language for integra-
tion with any system that could benefit from
such a capability. A few years later, Microsoft

came up with Application Basic as its general-
purpose scripting language for all its office pro-
ductivity applications.

Those early developments acquainted pro-
grammers with the notion of customizing ap-
plications through scripting and opened the
road for powerful, general-purpose scripting
languages such as Perl, Python, and Ruby (see
John Ousterhout’s article, “Scripting: Higher-
Level Programming for the 21st Century,” in
Computer’s March 1998 issue). Scripting lan-
guages glued to applications serve an impor-
tant purpose: they greatly ease the application’s
configuration and customization and support
end-user programming by offering a safe and
friendly development environment. Gone are
the intricacies of C’s memory management, the
convoluted string manipulation, and the com-
plexity of the application’s internal data struc-
tures. Instead, the scripting language typically
offers automatic memory management, a pow-
erful string data type, sophisticated data struc-
tures, a rich repertoire of operations, and an in-
tuitive API for manipulating application data and
state. Additionally, by interpreting the scripting
language, the application can isolate itself from
undesirable effects of the scripting code, such
as crashes and data corruption.

My impression is that with the evolution of
Java and Microsoft’s .NET offerings (I’ll use the
term Java as a stand-in for both alternatives),
the niche occupied by scripting languages is
rapidly shrinking. We are approaching the end
of an era.

Java Makes Scripting
Languages Irrelevant?

Diomidis Spinellis

Simplicity does not precede complexity, but follows it. — Alan J. Perlis

M a y / J u n e 2 0 0 5 I E E E S O F T W A R E 7 1

TOOLS OF THE TRADE

Rumors of the death of
scripting languages ...

Java now offers most of the nice fea-
tures that scripting languages provide
to applications:

■ automatic memory management
through garbage collection,

■ a standard string data type,
■ collection interfaces implementing

most useful data structures, and
■ a very rich language library.

Additionally, in applications written
in Java, what we might consider an API
already comes for free as part of the
object-oriented design. You only need
to allow an application to dynamically
load user-specified classes, expose its
API by providing access to some of the
application’s objects, and limit the un-
desirable couplings through the secu-
rity manager and exception handlers,
and the need for a separate scripting
language vanishes.

Many modern Java applications that
support beans, plug-ins, and other ex-
tension mechanisms follow exactly this
strategy—notably, Eclipse, Maven, Ant,
Javadoc, ArgoUML, and Tomcat. Even
on resource-constrained embedded de-
vices—such as mobile phones, which are
still programmed in a system program-
ming language—configuration and cus-
tomization is moving in a Java direction.

... are greatly exaggerated
Does the trend of customizing appli-

cations through a Java interface make
scripting languages irrelevant? Yes and
no. As an application configuration and
extension mechanism, Java is probably
the way to go. The cost of marshaling
and unmarshaling data objects and
types between the application’s code
written in Java and the conventions ex-
pected by a different scripting language
is too high for the limited incremental
benefits that the scripting language
would offer. On the other hand, script-
ing languages still have an edge in a
number of areas, offering us many dis-
tinct advantages.

A more flexible or imaginative syntax.
Think of Perl’s numerous quoting mech-

anisms and its regular expression ex-
tension syntax or Python’s use of in-
dentation for grouping statements.
These make some program elements a
lot easier to read. As an example, vari-
able substitution within Perl’s or the
Unix shell’s double-quoted strings is by
far the most readable way to represent
a program’s output.

Less fuss about types. Most scripting
languages are typeless and therefore
easier to write programs in. For exam-
ple, Perl makes writing a client or
server for an XML-based Web service a
breeze, whereas in Java we have to go
through numerous contortions to im-
plement the same functionality. Of
course, the robustness and maintain-
ability of code written in a typeless lan-
guage is a different question, as many
of us who maintain production code
written in a scripting language later
discover.

A more aggressive use of reflection. Con-
sider Perl’s eval construct and Python’s
object emulation features, which let pro-
grammers construct and execute code on
the fly or dynamically change a class’s
fields. In many cases, these features sim-
plify the construction of flexible and
adaptable software systems.

Viability as a command language. Many
scripting languages (such as those in op-
erating system shells) can also double as

a command language. Command-line in-
terfaces often offer a considerably more
expressive working medium than GUI
environments (I’ll expand on that in an-
other column). Coupling a command-
line interface with a scripting language
means that you can easily promote com-
monly executed command sequences
into automated scripts—a boon to us de-
velopers. This coupling also encourages
an exploratory programming style,
which many of us find very productive. I
often code complex pipelines step by
step, examining each step’s output, be-
fore tacking another processing element
at the pipeline’s end.

A shorter build cycle. For many sys-
tems, a build cycle that provides time
for an elaborate lunch is now sadly his-
tory. However, the tight feedback loop
permitted by the lack of a compilation
step in scripting languages allows for
rapid prototyping and exploratory
changes, which can often occur hand-
in-hand with the end user. This is a fea-
ture that those using agile development
methodologies can surely appreciate.

S o, where do we stand now? The gap
between system programming lan-
guages and scripting languages is

slowly closing. For example, some
scripting languages are capitalizing on
Java’s infrastructure by having their
code compile into Java virtual machine
bytecode. However, a lot of ground in
the middle is still up for grabs. New sys-
tem programming-language designs can
offer more of the advantages now avail-
able only through scripting. And script-
ing languages are constantly benefiting
from hardware performance advances
that make their (real or perceived) effi-
ciency drawbacks less relevant. The is-
sue of the result’s quality remains an
open question on both fronts.

We developers, as avid tool users,
can enjoy viewing the battle from on
top and reap the benefits.

Diomidis Spinellis is an associate professor in the De-
partment of Management Science and Technology at the Athens
University of Economics and Business and the author of Code
Reading: The Open Source Perspective (Addison-Wesley, 2003).
Contact him at dds@aueb.gr.

Does the trend of
customizing applications
through a Java interface

make scripting
languages irrelevant?

Yes and no.

