
1 4 I E E E S O F T W A R E P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y 0 7 4 0 - 7 4 5 9 / 0 5 / $ 2 0 . 0 0 © 2 0 0 5 I E E E

E d i t o r : D i o m i d i s S p i n e l l i s ■ A t h e n s U n i v e r s i t y o f E c o n o m i c s a n d B u s i n e s s ■ d d s @ a u e b . g r

D
ear Editor,

I know that you’re nowadays often
taken for granted and that some pro-
grammers consider you a relic. Yet
many programmers continue to spend

an inordinate amount of time with you and of-
ten listen to your advice. As you’ve no doubt

observed, we programs are of-
ten mistreated; in this letter,
I’ve written my most common
grievances hoping you can con-
vince programmers to treat us
better.

In the past, I know that you
had a more important posi-
tion. Developers would fight to
determine which of your two
cousins, vi or Emacs, was most

versatile. Creating an editor was no mean feat.
The (now famous) programmers who brought
your cousins to life, Bill Joy and Richard Stall-
man, had to overcome limitations such as slow
terminal lines and CPUs, a small address space,
and the idiosyncrasies of the numerous mutu-
ally incompatible terminals. Today, the perva-
siveness of GUI libraries, fast processors, and
abundant memory space make developing an
editor a weekend project.

I believe you’re not less important than you
were 20 years ago. One of the best things you
can do for programmers (and, incidentally, us
programs) is to convince them to use their
heads—taking advantage of your advanced fa-

cilities—instead of their fingers. First of all, this
switch will reduce their risk of suffering from
repetitive stress injury: If they can accomplish
the effect of 100 keystrokes by giving you a 20-
character search and replace command, they’ve
saved their fingers from the impact force of 80
keystrokes.

Furthermore, by devising complex com-
mands instead of repetitively typing they re-
main attentive rather than bored, and frankly, I
trust you a lot more than programmers in per-
forming repetitive actions. Most importantly,
each time programmers think of a way to au-
tomate a complex editing task by giving you an
appropriate command, they sharpen their men-
tal skills. In contrast to their finite typing ca-
pacity, their mental skills appear to be infinitely
expandable; over the years, I’ve encountered
programmers who could almost perform magic
with their editor.

My dear editor, let me give you some exam-
ples of how expert programmers can let their
brains work instead of their fingers. If one of
my classes contains fields named x1, y1, x2,
and y2, a deft programmer will look for any of
them in the code using a simple regular expres-
sion. Changing the variable names by adding
an underscore between the letter and the digit
with a single command is more complex, but
again doable using a regular expression search-
and-replace command. In cases where such a
command becomes too complex, I’ve seen pro-
grammers locate the code element using a reg-
ular expression search but perform the replace-

Dear Editor
Diomidis Spinellis

Machines should work. People should think. —Richard Hamming

tools of the trade

M a r c h / A p r i l 2 0 0 5 I E E E S O F T W A R E 1 5

TOOLS OF THE TRADE

ment using the editor’s “repeat last
command” feature.

Of course, we both know that an
editor isn’t always what you want for
modifying programs. External tools
also come in handy, and for this, I re-
ally appreciate editors that can pipe a
range of my body through an external
filter. For example, if the order of two
elements is reversed in a structure, the
initialization data can also be reversed
by piping it through the awk {print
$2, $1} one-liner.

I don’t consider all automation bene-
ficial. Many programmers use your
autoformatting facilities to beat us pro-
grams into shape. However, this is highly
inconvenient for us. First of all, autofor-
matting isn’t a substitute for good taste.
Often, by judiciously adding some space
in one of my code blocks, I can become
easier to understand and maintain.
Blindly applying autoformatting can de-
stroy carefully laid out code elements.
Additionally, a version-control system
will store a new version every time I pass
through with a new format, recording
thousands of unimportant changes and
confusing the programmers who will
maintain me in the future.

Autoformatting introduces another
problem into the development process;
a risk-analyst would call it overcom-
pensation. Programmers, confident that
you, the editor, will handle all format-
ting tasks for them, completely neglect
formatting us, leaving us worse than
how we’d be without your help. Scien-
tists have observed this phenomenon in
the real world: After the introduction of
safety caps in medicine bottles, parents
neglected locking medicine cabinets and
accidental child poisonings actually in-
creased. About a week ago, I overhead
with horror a programmer commenting
that he didn’t know Java’s formatting
guidelines because his editor handled
formatting for him.

I hear you say, “You’re asking me to
stop doing my work. I simply can’t sit
idle watching the programmer hack you
programs to death!” My dear editor,
don’t worry. You’ll have plenty of useful
work, if only the programmer asks. For
instance, take syntax coloring. Through
syntax coloring, programmers can eas-

ily identify keywords, variables, con-
stants, and comments. Often, they can
also spot silly syntax errors (such as a
missing quote), avoiding the distraction
of an unproductive compile-edit cycle.

This brings me to another useful ser-
vice you should be providing: error high-
lighting. Identifying a missing operator
or semicolon also helps in the same way,
as long as you do it correctly and unob-
trusively. Don’t distract programmers
with false alarms while they write a
statement, and never highlight errors
that aren’t. False error reports will make
programmers simply switch this useful
feature off.

A deep understanding of the language
we’re written in will also help you better
serve programmers. Most modern lan-
guages follow a block structure identi-
fied by indentation; in some languages
(such as Python, Occam, and Haskell)
indentation is even semantically signifi-
cant. An editor that won’t allow pro-
grammers to easily increase and decrease
indentation levels of our code blocks
simply isn’t suitable for programming.

Another language-specific service you
can offer is marking matching delimiters
(brackets, braces, square and angle
brackets, and, dare I suggest it, XML
tags). Of course, I know that some of
your kind go even further and provide
complete refactoring support: changes of
variable names and method signatures,
field encapsulation, extraction of local
variables and constants, and movement
of my code elements. I’m all for that;
things that you can do automatically and
reliably let programmers spend more
quality time with me.

As an editor, you should also help
programmers navigate within their in-
creasingly complicated environment. By
providing online help for API elements
and convenient facilities for browsing
my code’s structure, I’ll be less fearful of
growing fat and ugly by programmers
who reinvent the wheel instead of using
an API feature or one of my existing
classes or functions.

I’ve been babbling for far too long,
so I’ll close this letter with a few words
on a feature I’m sure you’re really proud
of: editor macros. I’m sorry to tell you,
but from my experience, these macros
often indicate a hidden software design
deficiency. If a programmer has to use a
macro (or a wizard, in some integrated
development environments) to create a
new GUI element or code template, the
program or its development environ-
ment probably has a design bug. In most
cases, programmers using macros and
wizards to save repetitive typing are
programming at the wrong abstraction
level.

So, dear editor, please pass our pro-
grammer friends the following advice:
Don’t type what you can automate in the
editor environment, and don’t use the
editor features for what you can code.

Sincerely,

A Program

Diomidis Spinellis is an associate professor in the De-
partment of Management Science and Technology at the Athens
University of Economics and Business and the author of Code
Reading: The Open Source Perspective (Addison-Wesley, 2003).
Contact him at dds@aueb.gr.

