10015 0f the {rade

Editor: Diomidis Spinellis

Athens University of Economics and Business

dds@aueb.gr

The Tools at Hand

The tools we use have a profound (and devious!) influence on our thinking habits, and,

therefore, on our thinking abilities.

ith a shovel excavator, its operator
can effortlessly move 720 tons of
earth with a single movement. On
the other end of the spectrum, a
VLSI fabrication plant lets design-
ers create elaborate submicron
structures. Without tools, a car factory’s thou-
sands of employees can’t accomplish much;
with tools, they can assemble a car in 18 effort-
hours. Sometimes, tools can even subsume
their operators’ importance.
The violinist Ivry Gitlis, con-
sidered one of the most tal-
ented musicians of his genera-
tion, said of his Stradivarius: “I
have a violin that was born in
1713. 1 don’t consider it my vi-
olin. Rather, I am its violinist; I
am passing though its life.”
Tools are clearly an important
and defining element of any
profession and activity: tools help us move
boulders and atoms; tools help us reach the
Moon and our soul.

This new IEEE Software column aims to ex-
plore the interplay between software develop-
ment and the tools we apply to the problem.
Skilled craftsmen set themselves apart from am-
ateurs by the tools they use and the way they
employ them. As a professional, I feel ’'m get-
ting a tremendous boost in my productivity by
appropriately applying tools to the software
construction problems I face every day. I also
often find myself developing new tools, both for
my personal use and for wider distribution.
Column installments will discuss specific soft-

10 IEEE SOFTWARE Published by the IEEE Computer Society

—Edsger W. Dijkstra

ware construction activities from the standpoint
of the tools we can employ—the tools of our
trade. Specific topics I plan to address include
editing, compiling, documentation, debugging,
testing, configuration management, issue track-
ing, the development environment, tool build-
ing, and domain-specific tools. Of course, this is
your column as much as it is mine, so I welcome
your suggestions for different topics or view-
points; email me at dds@aueb.gr.

So, how do the tools of our trade measure
up? Pathetically, by many measures. Although
the software industry is large and, dare I say it,
mature, the software tool industry is still in its
infancy. This becomes readily apparent if we
consider the cost of the tools we use. A 720
ton-rated shovel excavator is so expensive that
the company selling it also provides financing.
The cost of the VLSI fabrication plant effec-
tively dictates the manufactured chips’ product
cycles. In comparison, software development
tools cost at most a few thousands of dollars
per seat. Economists track capital expendi-
tures as a way to judge a country or sector’s
economic future. On the radar screen of these
statistics, the cost of software development
tools wouldn’t amount to a single blip.

To substantiate the claim of capital under-
spending in our industry, I used Standard &
Poor’s COMPUSTAT global database to compare
the capital expenditures of some industries we
software engineers often admire and look to as
role models against our own. Look at Table 1%

0740-7459/05/$20.00 © 2005 IEEE

TOOLS OF THE TRADE

numbers. The semiconductor industry’s
capital expenditures amount to 23 per-
cent of its revenue. This is how it has
succeeded in following Moore’s law for
more than 30 consecutive years. The car
industry’s robotic factories, seen as pat-
terns for emulation by proponents of
software assembly plants, soak up 8 per-
cent of its revenues. Even the nomadic
heavy-construction industry—our peren-
nial favorite when we compare software
engineering to bridge building—spends
on capital equipment nearly twice the
percentage of revenues that our own cus-
tom software construction (program-
ming services) firms spend.

I hear you saying that software’s
economies are different: we can duplicate
software at a zero marginal cost, so the
low cost of tools reflects the realities of
their distribution rather than their intrin-
sic value. I only wish this was true—that
we’re all buying expensively developed
tools at rock-bottom prices. I can vouch
from experience that the effort our in-
dustry puts into developing software de-
velopment tools is apparently miniscule.
A couple of years ago I developed UML-
Graph, a prototype of a declarative UML
diagramming tool, and made it available
over my Web site. [wrote the tool’s first
version over a single weekend, yet I regu-
larly receive email from enthusiastic
users. This fact definitely doesn’t reflect
on my programming brilliance, but says
a lot about the state of the art in dia-
gramming software and the amount of
cash employers are willing to spend on
purchasing diagramming (and conceiv-
ably other software development) tools.

What would happen if an established
tool vendor with deep pockets decided
to build a software development tool by
investing the kind of money associated
with a chip plant? (Mind you, I recog-
nize the difference between chip produc-
tion and software design; my argument
concerns capital expenditures over the
entire product life cycle.) According to
Intel financier Arthur Rock, the cost of
capital equipment to build semiconduc-
tors doubles every four years. Currently,
a chip plant under construction costs
over US$2.5 billion. To put this number
in perspective, consider that it represents
about 13,000 software development ef-

fort-years. This is almost three times the
effort invested in the development of
0S5/360 (5,000 effort-years) and, accord-
ing to my calculations, almost equal to
the development effort of the Windows
NT line, up to and including Windows
2000.

Investing this kind of money on a de-
sign tool could buy us round-trip,
model-based software development that
actually works under realistic condi-
tions. If we invested this money into a
compiler, we could get type-checking in-
tegrated across the presentation, appli-

cation logic, and database layers or the
ability to generate provably correct and
efficient code. We could also have at our
hands debuggers that can execute a pro-
gram forward and backward; editors
that let us navigate between diagrams
and source code, effortlessly performing
sophisticated refactoring operations;
and infrastructure to test an applica-
tion’s GUI delivered as part of our inte-
grated development environments.

To get a picture of the lag between
what’s theoretically possible and what
tools provide in practice, scan the pro-

Industry Revenue (US$ billion) Capital expenditure ($ billion) CE/R (%)
Semiconductors 430,360 99,577 23.1
Motor vehicles 1,094,157 90,042 8.2
Heavy (nonbuilding) 143,957 6,187 43
construction

Prepackaged software 105,356 3,402 3.2
Programming services 18,216 438 2.4

January/February 2005 1EEE SOFTWARE 11

TOOLS OF THE TRADE

ceedings of the last five Programming
Language Design and Implementation
(PLDI) and International Conference on
Software Engineering (ICSE) confer-
ences. You'll see how few of the results
reported there are now commercially
available to developers for everyday use.

As if our underspending on software
development tools wasn’t worrisome
enough, a related problem in our pro-
fession is our failure to use the most ap-
propriate tools for a given task. Here’s
my list of 10 Software Tool Sins:

10. Maintaining the source code’s API
documentation separately from the
source code.

9. Failing to integrate automated unit
testing in the development process.

8. Using paper forms, email folders,
and Post-it notes to track pending
issues.

IEEE Pervasive

. Painstakingly analyzing a source

code change’s effects manually
when the compiler and the lan-
guage’s type system can do the job
more reliably.

. Refusing to learn how existing

tools can be made to work to-
gether through scripting or a shell
interface.

. Ignoring or (worse) silencing com-

piler warning messages.

. Maintaining isolated copies of the

source code base for each developer,
and performing version control and
software configuration manage-
ment using email attachments or
those trendy USB dongles.

. Locating definitions of program

entities through a mixture of
guesswork and sequential scanning
through the source code.

. Adding temporary print statements

in the source code instead of using

a debugger.

delivers the latest developments
in pervasive, mobile, and
ubiquitous computing. With
content that’s accessible and
useful today, the quarterly
publication acts as a catalyst for
realizing the vision of pervasive
(or ubiquitous) computing Mark
Weiser described more than a
decade ago—the creation of
environments saturated with
computing and wireless
communication yet gracefully
integrated with human users.
Editor in Chief: M. Satyanarayanan
Carnegie Mellon University

Associate EICs: Roy Want, Intel Research;
Tim Kindberg, HP Labs; Gregory Abowd,

and Arizona University

ervasive

COMIPUTING

MOBILE AND UBIQUITOUS SYSTEMS

e Wearable

Georgia Tech; Nigel Davies, Lancaster University

Computing

UPCOMING ISSUES:

v Energy Harvesting and
Conservation

v/ The Smart Phone

v Ubiquitous Computing
in Sports

v/ Rapid Prototyping

SUBSCRIBE NOW! www.computer.org/pervasive/subscribe.htm

12 IEEE SOFTWARE www.computer.org/software

1. Performing mechanical, repetitive
editing operations by hand.

I often spot mature developer col-
leagues committing the number one of-
fense in the list by the sound of their key-
board: the click-clack-clack, click-clack-
clack, click-clack-clack typing pattern
gives them away. This sin is inexcusable,
as (free) editors with sophisticated text-
processing capabilities have been avail-
able for over 30 years. Other sins, such
as number two, are admittedly a mixture
of tool immaturity and developer lazi-
ness. The Linux 2.4 kernel contains
65,000 printf or printk statements,
the FreeBSD kernel another 17,000. We
can explain many of these statements by
most debuggers’ poor support for em-
bedded and system software develop-
ment—a shortcoming that’s becoming
increasingly important as more and
more software is developed for embed-
ded devices. In my experience, many
other sinful habits can be traced back to
our university days. Academia often re-
gards the dirty mechanics of software
development as a less-than-respectable
activity. Software tools get in the way
when teaching introductory pro-
gramming courses, and would take valu-
able time away from discussing lofty
theories when teaching software engi-
neering. So, students are left on their
own, many graduating and still writing
their software with Windows Notepad.

here’s really no need to end this col-

umn in a sullen mood. Software is a

great lever. What little our industry
has invested in tool development has
provided us with numerous admirable
and sophisticated tools. The many vol-
unteers working on free and open
source software projects are further in-
creasing our choices for mature devel-
opment environments and tools. It’s up
to us to make the best of what’s avail-
able, and—why not—contribute back
to the community. @

Diomidis Spinellis is an associate professor in the
Department of Management Science and Technology af the
Athens University of Economics and Business and the author of
Code Reading: The Open Source Perspective (Addison-Wesley,
2003). Contact him at dds@aueb.gr.

