
1 0 I E E E S O F T W A R E P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y 0 7 4 0 - 7 4 5 9 / 0 5 / $ 2 0 . 0 0 © 2 0 0 5 I E E E

tools of the trade
E d i t o r : D i o m i d i s S p i n e l l i s ■ A t h e n s U n i v e r s i t y o f E c o n o m i c s a n d B u s i n e s s ■ d d s @ a u e b . g r

W
ith a shovel excavator, its operator
can effortlessly move 720 tons of
earth with a single movement. On
the other end of the spectrum, a
VLSI fabrication plant lets design-
ers create elaborate submicron

structures. Without tools, a car factory’s thou-
sands of employees can’t accomplish much;
with tools, they can assemble a car in 18 effort-
hours. Sometimes, tools can even subsume

their operators’ importance.
The violinist Ivry Gitlis, con-
sidered one of the most tal-
ented musicians of his genera-
tion, said of his Stradivarius: “I
have a violin that was born in
1713. I don’t consider it my vi-
olin. Rather, I am its violinist; I
am passing though its life.”
Tools are clearly an important
and defining element of any

profession and activity: tools help us move
boulders and atoms; tools help us reach the
Moon and our soul.

This new IEEE Software column aims to ex-
plore the interplay between software develop-
ment and the tools we apply to the problem.
Skilled craftsmen set themselves apart from am-
ateurs by the tools they use and the way they
employ them. As a professional, I feel I’m get-
ting a tremendous boost in my productivity by
appropriately applying tools to the software
construction problems I face every day. I also
often find myself developing new tools, both for
my personal use and for wider distribution.
Column installments will discuss specific soft-

ware construction activities from the standpoint
of the tools we can employ—the tools of our
trade. Specific topics I plan to address include
editing, compiling, documentation, debugging,
testing, configuration management, issue track-
ing, the development environment, tool build-
ing, and domain-specific tools. Of course, this is
your column as much as it is mine, so I welcome
your suggestions for different topics or view-
points; email me at dds@aueb.gr.

Underspending on development
tools

So, how do the tools of our trade measure
up? Pathetically, by many measures. Although
the software industry is large and, dare I say it,
mature, the software tool industry is still in its
infancy. This becomes readily apparent if we
consider the cost of the tools we use. A 720
ton-rated shovel excavator is so expensive that
the company selling it also provides financing.
The cost of the VLSI fabrication plant effec-
tively dictates the manufactured chips’ product
cycles. In comparison, software development
tools cost at most a few thousands of dollars
per seat. Economists track capital expendi-
tures as a way to judge a country or sector’s
economic future. On the radar screen of these
statistics, the cost of software development
tools wouldn’t amount to a single blip.

To substantiate the claim of capital under-
spending in our industry, I used Standard &
Poor’s COMPUSTAT global database to compare
the capital expenditures of some industries we
software engineers often admire and look to as
role models against our own. Look at Table 1’s

The Tools at Hand
Diomidis Spinellis

The tools we use have a profound (and devious!) influence on our thinking habits, and,
therefore, on our thinking abilities. —Edsger W. Dijkstra

J a n u a r y / F e b r u a r y 2 0 0 5 I E E E S O F T W A R E 1 1

TOOLS OF THE TRADE

numbers. The semiconductor industry’s
capital expenditures amount to 23 per-
cent of its revenue. This is how it has
succeeded in following Moore’s law for
more than 30 consecutive years. The car
industry’s robotic factories, seen as pat-
terns for emulation by proponents of
software assembly plants, soak up 8 per-
cent of its revenues. Even the nomadic
heavy-construction industry—our peren-
nial favorite when we compare software
engineering to bridge building—spends
on capital equipment nearly twice the
percentage of revenues that our own cus-
tom software construction (program-
ming services) firms spend.

I hear you saying that software’s
economies are different: we can duplicate
software at a zero marginal cost, so the
low cost of tools reflects the realities of
their distribution rather than their intrin-
sic value. I only wish this was true—that
we’re all buying expensively developed
tools at rock-bottom prices. I can vouch
from experience that the effort our in-
dustry puts into developing software de-
velopment tools is apparently miniscule.
A couple of years ago I developed UML-
Graph, a prototype of a declarative UML
diagramming tool, and made it available
over my Web site. I wrote the tool’s first
version over a single weekend, yet I regu-
larly receive email from enthusiastic
users. This fact definitely doesn’t reflect
on my programming brilliance, but says
a lot about the state of the art in dia-
gramming software and the amount of
cash employers are willing to spend on
purchasing diagramming (and conceiv-
ably other software development) tools.

What would happen if an established
tool vendor with deep pockets decided
to build a software development tool by
investing the kind of money associated
with a chip plant? (Mind you, I recog-
nize the difference between chip produc-
tion and software design; my argument
concerns capital expenditures over the
entire product life cycle.) According to
Intel financier Arthur Rock, the cost of
capital equipment to build semiconduc-
tors doubles every four years. Currently,
a chip plant under construction costs
over US$2.5 billion. To put this number
in perspective, consider that it represents
about 13,000 software development ef-

fort-years. This is almost three times the
effort invested in the development of
OS/360 (5,000 effort-years) and, accord-
ing to my calculations, almost equal to
the development effort of the Windows
NT line, up to and including Windows
2000.

Investing this kind of money on a de-
sign tool could buy us round-trip,
model-based software development that
actually works under realistic condi-
tions. If we invested this money into a
compiler, we could get type-checking in-
tegrated across the presentation, appli-

cation logic, and database layers or the
ability to generate provably correct and
efficient code. We could also have at our
hands debuggers that can execute a pro-
gram forward and backward; editors
that let us navigate between diagrams
and source code, effortlessly performing
sophisticated refactoring operations;
and infrastructure to test an applica-
tion’s GUI delivered as part of our inte-
grated development environments.

To get a picture of the lag between
what’s theoretically possible and what
tools provide in practice, scan the pro-

Table 1
Capital expenditures in different industries

Industry Revenue (US$ billion) Capital expenditure ($ billion) CE/R (%)

Semiconductors 430,360 99,577 23.1
Motor vehicles 1,094,157 90,042 8.2
Heavy (nonbuilding) 143,957 6,187 4.3
construction
Prepackaged software 105,356 3,402 3.2
Programming services 18,216 438 2.4

1 2 I E E E S O F T W A R E w w w. c o m p u t e r. o r g / s o f t w a r e

TOOLS OF THE TRADE

ceedings of the last five Programming
Language Design and Implementation
(PLDI) and International Conference on
Software Engineering (ICSE) confer-
ences. You’ll see how few of the results
reported there are now commercially
available to developers for everyday use.

Underused tools
As if our underspending on software

development tools wasn’t worrisome
enough, a related problem in our pro-
fession is our failure to use the most ap-
propriate tools for a given task. Here’s
my list of 10 Software Tool Sins:

10. Maintaining the source code’s API
documentation separately from the
source code.

9. Failing to integrate automated unit
testing in the development process.

8. Using paper forms, email folders,
and Post-it notes to track pending
issues.

7. Painstakingly analyzing a source
code change’s effects manually
when the compiler and the lan-
guage’s type system can do the job
more reliably.

6. Refusing to learn how existing
tools can be made to work to-
gether through scripting or a shell
interface.

5. Ignoring or (worse) silencing com-
piler warning messages.

4. Maintaining isolated copies of the
source code base for each developer,
and performing version control and
software configuration manage-
ment using email attachments or
those trendy USB dongles.

3. Locating definitions of program
entities through a mixture of
guesswork and sequential scanning
through the source code.

2. Adding temporary print statements
in the source code instead of using
a debugger.

1. Performing mechanical, repetitive
editing operations by hand.

I often spot mature developer col-
leagues committing the number one of-
fense in the list by the sound of their key-
board: the click-clack-clack, click-clack-
clack, click-clack-clack typing pattern
gives them away. This sin is inexcusable,
as (free) editors with sophisticated text-
processing capabilities have been avail-
able for over 30 years. Other sins, such
as number two, are admittedly a mixture
of tool immaturity and developer lazi-
ness. The Linux 2.4 kernel contains
65,000 printf or printk statements,
the FreeBSD kernel another 17,000. We
can explain many of these statements by
most debuggers’ poor support for em-
bedded and system software develop-
ment—a shortcoming that’s becoming
increasingly important as more and
more software is developed for embed-
ded devices. In my experience, many
other sinful habits can be traced back to
our university days. Academia often re-
gards the dirty mechanics of software
development as a less-than-respectable
activity. Software tools get in the way
when teaching introductory pro-
gramming courses, and would take valu-
able time away from discussing lofty
theories when teaching software engi-
neering. So, students are left on their
own, many graduating and still writing
their software with Windows Notepad.

T here’s really no need to end this col-
umn in a sullen mood. Software is a
great lever. What little our industry

has invested in tool development has
provided us with numerous admirable
and sophisticated tools. The many vol-
unteers working on free and open
source software projects are further in-
creasing our choices for mature devel-
opment environments and tools. It’s up
to us to make the best of what’s avail-
able, and—why not—contribute back
to the community.

Diomidis Spinellis is an associate professor in the
Department of Management Science and Technology at the
Athens University of Economics and Business and the author of
Code Reading: The Open Source Perspective (Addison-Wesley,
2003). Contact him at dds@aueb.gr.

IEEE Pervasive Computing...

delivers the latest developments

in pervasive, mobile, and

ubiquitous computing. With

content that’s accessible and

useful today, the quarterly

publication acts as a catalyst for

realizing the vision of pervasive

(or ubiquitous) computing Mark

Weiser described more than a

decade ago—the creation of

environments saturated with

computing and wireless

communication yet gracefully

integrated with human users.

Editor in Chief: M. Satyanarayanan
Carnegie Mellon University

Associate EICs: Roy Want, Intel Research;
Tim Kindberg, HP Labs; Gregory Abowd,
Georgia Tech; Nigel Davies, Lancaster University
and Arizona University

UPCOMING ISSUES:

✔ Energy Harvesting and
Conservation

✔ The Smart Phone

✔ Ubiquitous Computing
in Sports

✔ Rapid Prototyping

SUBSCRIBE NOW! www.computer.org/pervasive/subscribe.htm

MOBILE AND UBIQUITOUS SYSTEMS

