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Abstract—Tool support for refactoring code written in mainstream languages such as C and C++ is currently lacking due to the

complexity introduced by the mandatory preprocessing phase that forms part of the C/C++ compilation cycle. The defintion and use of

macros complicates the notions of scope and of identifier boundaries. The concept of token equivalence classes can be used to bridge

the gap between the language proper semantic analysis and the nonpreprocessed source code. The CScout toolchest uses the

developed theory to analyze large interdependent program families. A Web-based interactive front end allows the precise realization of

rename and remove refactorings on the original C source code. In addition, CScout can convert programs into a portable obfuscated

format or store a complete and accurate representation of the code and its identifiers in a relational database.

Index Terms—Refactoring, preprocessor, program families, renaming, C, C++, reverse engineering.
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1 INTRODUCTION

REFACTORING program transformations are widely re-
garded as a significant method for performing design

level changes. The complexity of design changes performed
on an established source code base is often harnessed by
having incremental refactoring operations performed by
humans assisted by specialized tools. However, tool
support for the mainstream languages C and C++ is
currently lacking, although the theory behind the concept
is clearly understood. The reason behind this state of affairs
is the complexity introduced by the mandatory preproces-
sing phase that forms part of the C/C++ compilation cycle.
The problem, in short, is that macros complicate the notion
of scope and the notion of an identifier. For one,
preprocessor macros and file inclusion create their own
scopes. This is, for example, the case when a single textual
macro using a field name that is incidentally identical
between two structures that are not otherwise related is
applied on variables of those structures. In addition, new
identifiers can be formed at compile time via the pre-
processor’s concatenation operator.

The source code analysis problems introduced by the

C preprocessor can be overcome by considering the scope of

preprocessor identifiers during a program’s language

proper semantic analysis phase. Having performed this

analysis, refactoring transformations can be performed by

tagging all identifiers with their original source code

position and taking into account the identifier equivalence

classes formed by the combined preprocessor and language

proper scopes.
In the following sections, we describe the problems

introduced by preprocessing and introduce algorithms for

precisely mapping a C/C++ program’s semantic informa-
tion to its nonpreprocessed source code. Furthermore, we
demonstrate the application of our methods in the CScout
toolchest1 that programmers can use to perform rename
and remove refactorings.

2 WORK CONTEXT

Source-to-source transformations [1] in a body of code can
serve a variety of goals. The resulting new code may be
easier to maintain and reuse, be more readable, operate
faster, or require less memory than the old code; many of
the transformations can be described under the general
term of refactoring [2], [3], [4], [5]. Common examples of
refactorings include the encapsulation of fields, the hiding
of methods, the replacement of conditionals with poly-
morphism, various rename and removal operations, and the
movement of fields and methods up and down a class
hierarchy. The automation of some of these transformations
is in principle straightforward; it can be implemented by
rearranging a syntactic representation of the code and
generating the new code from that representation. As an
example, the parse tree of a Java or Ada program can be
manipulated in a way that preserves its meaning and then
flattened again to create a new, equivalent source code body
that will represent the program after the transformation.
When the result of these transformations is supposed to be
code that will be read and maintained by humans, an
important goal is the preservation of the original format,
identifier names, and comments. In our previous example,
this can be accommodated by incorporating into each parse
tree node the whitespace (including comments) surround-
ing it and associating the original names with identifier
nodes. Parse trees can also be used to analyze program code
identifying interdependencies between units such as func-
tions, classes, modules, and compilation units, locating
entity definitions, and as a basis for determining program
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slices [6]. Tools that aid program code analysis and
transformation operations are often termed browsers [7,
pp. 297-307] and refactoring browsers [8], respectively. A
different line of research [9], [10] focuses on the detection
and implementation of refactorings without human inter-
vention; this approach is outside the scope of our work.

2.1 Preprocessing

A complication arises in languages that include a pre-
processing phase as part of the compilation, such as C [11],
[12], C++ [13], Cyclone [14], PL/I, and many assembly-code
dialects. The preprocessing step typically performs macro-
substitutions replacing at a purely lexical level, token
sequences with other token sequences, conditional compila-
tion, comment removal, and file inclusion. Commands of the
C/C++ preprocessors are line-based and always start with a
# character. The #include command inserts at the point it
is encountered the contents of the file specified as its
argument. The #if, #ifdef, #ifndef, #else, #elif,
and #endif commands perform conditional compilation,
skipping code blocks depending on the value of a—com-
pile-time evaluated—expression; in practice, most cases
involve simple tests for macro definitions. Finally, the
#define command is used to define identifier or function-
like macro replacements. Constant, integer-valued expres-
sions are evaluated by the preprocessor only for the
purpose of conditional compilation; however, two prepro-
cessor-specific operators allow, when performing macro-
substitution, the conversion of tokens into strings (unary
operator #) and the concatenation of adjacent tokens (binary
operator ##).

Macro substitutions are often trivial, used to define
constants (Fig. 1, item 1), inline-compiled functions (Fig. 1,
item 2), or implement call-by-name semantics (Fig. 1,
item 3). However, macro substitutions are also often used
to create generic functions overcoming limitations of the
language’s type system (Fig. 1, item 4), affect the language’s
reserved words in, often misguided, attempts to enhance
readability (Fig. 1, item 5), create shortcuts for initializing
structures (Fig. 2a), and dynamically generate new code
sequences, such as function definitions, by pasting together
tokens, or substituting operators and whole code blocks
(Fig. 2b) [15]. File inclusion is typically used to bring into

the scope of a given compilation unit declarations of
elements defined in other units (and declared in separate
header files), thereby providing a way to communicate
declarations and type information across separately-com-
piled compilation units.

As a result of the changes introduced by the preproces-
sing phase, the parsing of the language proper and,
therefore, any meaning-preserving transformation, cannot
be performed unless the code is preprocessed. However,
after the preprocessing step has been performed, the parse
tree-based transformation approach we outlined cannot be
used because the tree contains the code in the form it has
after its preprocessing. This code differs significantly from
the original code and, in that representation it is neither
portable (since standard included files typically differ
between compilers, architectures, and operating systems),
nor readable or maintainable by people. In addition, file
inclusion introduces complex dependencies between files,
propagating bindings between declared, defined, and used
identifiers upward and downward in the file inclusion tree.

As an illustrative example of the complications intro-
duced by preprocessing, the code body of a simple loop
written in C to copy characters from the program’s standard
input to its output expands from 48 to 214 characters, while
the inclusion of the Microsoft Windows SDK windows.h

header file results in a preprocessed source code body of
158,161 lines, with identifiers spanning as many as
39 different files. Consequently, and to the best of our
knowledge, there are no known general purpose ap-
proaches for automatically performing nontrivial source-
to-source transformations on C and C++ code in a way that
preserves the original code structure. This is a significant
problem because these languages are popular, huge collec-
tions of code are written in them, and many important
maintenance-related activities such as refactoring could be
automated and performed in a safe and cost-effective
manner. Ernst et al. [16] provide a complete empirical
analysis of the C preprocessor use, a categorization of
macro bodies, and a description of common erroneous
macros found in existing programs. Furthermore, recent
work on object-oriented design refactoring [5] asserts that it
is generally not possible to handle all problems introduced
by preprocessing in large software applications.
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2.2 Analysis and Transformation Approaches

Analysis and transformation of C and C++ code can be
performed at different levels of code integration based on a
variety of techniques. The concepts of noise (extraneous
matches) and silence (missed matches) can be used to judge
the efficacy of a given method. As an example, consider the
task of locating occurrences of a given entity (e.g., a
function, or a structure member) in program code using a
text editor’s search function for the entity’s name.

Noise will occur through matches inside comments and
strings, in different name spaces (e.g., label names), or
outside the scope being searched.

Silence will result from matches that should occur, but are
missed: For example, a search for the definition and uses
of the blit_xor function in the code in Fig. 2b would
fail to locate its definition through the defblit macro.

We can classify the techniques typically used based on the
level of code integration they apply to.

Programmers typically deal with individual source files.
Most current source transformation tools for C/C++
operate at a lexical level on single files. Code beautifiers such
as the Unix-based cb and indent tools can improve the
readability of programs by rearranging whitespace. As
the definition of whitespace is the same for both the
C preprocessor and the C/C++ language proper, the
conservative transformations these tools employ can in
most cases be safely applied. The tools reformat the
program based on a naive parsing of the code that takes
hints from delimiters such as braces and brackets; their
operation can be fooled by the use of certain macro
substitutions, but, since the tools only rearrange white-
space, the program will only be suboptimally formatted yet
still perform its intended operation. Source code editors work
following imperative, task-oriented, text-processing com-
mands. Some editors can automatically indent code blocks,
or display reserved words and comments using special
colors; the approaches employed depend on heuristics
similar to those used by the code beautifiers.

A source file together with the files it includes forms a
compilation unit. A number of code analysis and code
generation tasks are performed on this entity. Compilers
typically perform (after the preprocessing phase) syntactic
and semantic analysis and code generation. In addition,
tools such as lint [17] and its descendants preprocess the file
(sometimes using custom-developed include files) and
employ heuristics to detect common programmer errors.
The PCp3 preprocessor-aware C source code analysis tool
[18] tightly integrates a customized preprocessor with a
C language parser to allow code written in Perl to
accurately analyze the use of preprocessor features. The
object file resulting from the compilation can also be
analyzed to accurately determine, at least, all globally
visible symbols defined and referenced in a given compila-
tion unit (subject to name-mangling restrictions, see below).

Multiple compilation units are linked together into a
linkage unit, which, in most cases, comprises an executable
program. The linkers typically lack information about the
syntax and semantics of the language; as a result,
techniques such as name mangling [19, pp. 121-127] are
often used to perform some kind of primitive type checking
at link time [20]. A number of integrated development
environments and tools such as cscope and ID utils allow the
user to specify the files comprising a linkage unit and
thereby perform textual searches or replacements across all
files. In addition, profilers [21] and debuggers [22] can be
used to analyze the program’s operations; however, they
fail to deal with source elements that were replaced during
the preprocessing step.
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Finally, a workspace or program family [5] consists of a
collection of source code files that form multiple linkage
units. The collection, typically organized through common
shared header files and separately compiled library files,
contains many interdependencies between files belonging
to different compilation units through the sharing of
source code via source file inclusion (during preproces-
sing) and linking. Typical examples of workspaces are
operating system distributions where both the kernel and
hundreds of user programs depend on the same include
files and libraries as well as software product lines [23],
[24]. Again, only textual processing can be performed at
this level, either using an IDE, or the text and file
processing tools available in environments such as Unix
[25]. As an example, locating the string printf in the
source code of an entire operating system source code
base can be performed using the command find -name

’*.[ch]’ -print | xargs grep printf.
In all the cases, we outlined above, an automated textual

operation, such as a global search and replace, will
indiscriminately change identifiers across macros, func-
tions, and strings. Code analysis tasks, such as the location
of all files where a particular identifier is used, are equally

haphazard operations. This state of affairs makes program-
mers extremely reluctant to perform large scale changes
across extensive bodies of C/C++ code. This observation is
anecdotally supported by the persistence of identifier
names (such as creat and splx in the Unix kernel)
decades after the reasons for their original names have
become irrelevant. The readability of existing code slowly
decays as layers of deprecated historical practice accumu-
late [26, pp. 4-6, 184] and even more macro definitions are
used to provide compatibility bridges with modern code.
Two theoretical approaches proposed for dealing with the
problems of the C preprocessor involve the use of
mathematical concept analysis for dealing with cases where
the preprocessor is used for configuration management
[27], and the definition of an abstract language for capturing
the abstractions for the C preprocessor in a way that allows
formal analysis [28].

In the following sections, we describe a method for
precisely identifying and analyzing the use of identifiers
in the original, nonpreprocessed body of source code,
taking into account the syntax and semantics of the C or
C++ programming language. Tools using the precise
classification of identifiers can then be used to perform
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renaming and remove refactorings, map dependencies
between source files, identify the impact of architectural
changes, optimize the build process, and generate high-
quality metrics. Being able to globally rename an
identifier name in an efficient manner can help program-
mers refactor and maintain their code by having identifier
names correctly reflect their current use and the project’s
contemporary naming conventions. The practice is also
important when code is reused by incorporating one
body of code within a different one; in situations where
the reused code will not be maintained in its original
context, the naming of all identifiers of the grafted code
should change to conform to the style used in the
workspace into which it was added. Finally, the replace-
ment of identifiers with mechanically generated names
can be used as a method to obfuscate programs so that
they can be distributed without exposing too many
details of their operation [29].

Modern language designs have tried to avoid the
complications of the C/C++ preprocessor. Many features
of the C++ language such as inline functions, and const
declarations supplant some common preprocessor uses.
Java does not specify a preprocessing step, while C# [30]
specifies a distinct scope for the defined preprocessor
identifiers that is visible only within the context of other
preprocessor directives. However, the preprocessing tech-
nology is still relevant in a number of contexts. Preproces-
sing is often used as a source-to-source transformation
mechanism to extend existing languages [31]. In addition,
the preprocessor is also used, in all the C++ implementa-
tions we are aware of, to implement the language’s
standard library, and, in particular, to support—via the file
inclusion mechanism—the generic programming facilities
of templates and the standard template library (STL) [32].

3 APPROACH DESCRIPTION

The problem we will solve can be described as follows:

A set of source code files S for a statically-scoped first order
language is processed before compilation by a general
purpose macro processor supporting file inclusion, macro
substitution, and token concatenation. A single instance of a
(identifier) token t in one of the files Si is modified resulting
in a new token t0. Propagate this change creating a new,
syntactically and semantically equivalent set of files R
differing from S only in the relevant names of identifier
tokens.

With the term “first order language,” we restrict our
language (or our approach’s domain) to systems that do
not have (or utilize) metaexecution or reflection capabilities.
Systems outside our domain’s scope include metainterpr-
eters implemented in nonpure Prolog, Scheme meta-
evaluators [33, pp. 286-315], runtime calls to the interpreter
in Perl and Tcl/Tk, and the reflection [34] capabilities of
Java [35, pp. 219-223] and C# [30]. In addition, the problem
definition assumes that t and t0 do not directly or indirectly
(after preprocessing) have a special meaning in the
language the programs are written in that will result in R
never being semantically equivalent to S. As an example, it
would in most cases not be legal to modify an existing
printf identifier in a C program (printf is part of the

standard library for hosted implementations), or to rename
an identifier into class in a C++ program (class is a C++
reserved word). This clarification is needed because tokens
treated as identifiers in the preprocessing stage can have a
special meaning (reserved word, or name of a library
facility) in the target language. Finally, we assume that t0

does not clash in any legal context with existing identifiers
in a way that would change the semantic meaning ofR. The
analysis tasks we identified in the previous sections can be
trivially performed by locating the identifiers that would
require modification without actually changing them.

Informally, we want to automate the process followed by
a programmer renaming or locating all instances of an
entity’s name. We will describe the approach in four steps
of gradually increasing refinement. Central to our approach
is the notion of token equivalence. Given the token to be
modified t, we want to locate the set of tokens Et occurring
in S so that, by changing each ti : ti 2 Et into t0, we will
obtain R. We define the set of tokens Et as the equivalence
class of t. For a complete workspace, we maintain a global
set V containing all equivalence classes V : 8iEi 2 V.

3.1 Semantic Equivalence

We first consider semantic equivalence in the absence of
preprocessing. We define two identifiers to be semantically
equivalent if these have the same name and statically refer
to the same entity following the language’s scoping and
namespace rules. The definition of static scope-based
resolution excludes the semantic equivalence introduced
by aliasing.

As an example, consider the (contrived) example of the
C++ program in Fig. 3. The equivalence classes for the
identifier a are marked in the right margin. The identifier a
is used in five distinct namespaces defined in C++: It is the
name of a structure tag (item 1), a member of two different
structures (items 2 and 3) (the members of each structure
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reside in their own namespace), a formal argument to the
function f (item 4), and a label in the function body (item 5).
Significantly, the two instances of the pointer variable bp are
not semantically equivalent under our definition because,
although they both point to the same underlying object
(sb), they are different according to the scoping rules of the
C++ language.

Determining the semantic equivalence classes of identi-
fiers is relatively straightforward and performed routinely
by all compilers: One follows the scope rules of the
language specification [36, pp. 474-479]—taking into ac-
count type inference rules for matching the declarations and
corresponding uses of structure and union members.

3.2 Lexical Equivalence

The lexical equivalence of tokens forms the basis of our
method by taking into account the scope and semantics of
preprocessing commands. A lexical equivalence class may
contain identifiers appearing on the right-hand side of
macro definitions and identifiers in the code body. Consider
the C code in Fig. 4. The two instances of b (item 1) form a
lexical equivalence class: Both must be changed to the same
new value in a transformation that preserves the operation
of the original program. Notice how the name of the label b
is not part of the equivalence class; modifying it indepen-
dently will not affect the rest of the program.

The operation of the preprocessor can also create

equivalence classes between identifiers that would not be

semantically equivalent under a language’s rules. The

macro val in Fig. 4 defines an accessor function; a common

occurrence in C programs. Note that the macro is used in a

polymorphic fashion: It is applied to two variables contain-

ing pointers to a different structure type. This macro

definition and application brings the semantically distinct

v fields of the structures a and b under the same lexical

equivalence class. All three instances of v must be changed

to the same new name in a meaning-preserving source

transformation. Note that the two structure declarations, the

definition of the the val macro, and its application could

occur in four different files (that may even belong to

different linkage units) combined using the preprocessor’s

file inclusion commands.
Lexical equivalence can also be introduced by the macro

processor without macro definition, through the inclusion
of the same file in multiple compilation units (a common
method for importing library declarations). If the included
file declares elements with static (compilation unit) scope,
then identifiers in two different compilation units may be
lexically equivalent, even though they are defined in
isolated scopes, as a change in one of the files, must be
propagated through the common included file to the other.
A representative example also appears in Fig. 4. The
identifiers unit and s are shared between the two C files
only because they both include the same header file.

Tokens can be grouped into equivalence classes using
the following algorithm.

1. Split the original nonpreprocessed source code into
tokens; each token ti is set to belong to a unique
equivalence class Ei.

2. Perform macro substitutions; the resulting code shall
consist of references to the original tokens.

3. Parse the program.
4. Perform semantic analysis according to the langua-

ge’s scoping and namespace rules. When two

identifiers ta 2 Ea and tb 2 Eb are found to be

semantically equivalent and Ea 6¼ Eb merge the

corresponding equivalence classes Ea and Eb into a
new one En ¼ Ea [ Eb adding En into V and removing

Ea and Eb from V.
Having grouped tokens into equivalence classes, source

code modifications can be performed by locating the
equivalence class Er to which a particular token tr belongs
and correspondingly modifying all tokens in that class in
the source code position they were found.
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3.3 Partial Lexical Equivalence

We introduce the notion of partial lexical equivalence to deal
with the issue of token concatenation. The preprocessor
used in the ANSI C and C++ languages can concatenate
tokens to form new ones using the ## operator. In addition,
historical practice in pre-ANSI versions of the preprocessor
also allowed token concatenation by separating them by a
comment in a macro replacement pattern. The result of this
capability is that there is no one-to-one equivalence between
tokens in the original source code and the tokens on which
the semantic analysis is performed. Parts of an identifier can
belong to different equivalence classes, as shown in Fig. 5
by the identifiers marked 1 and 2.

The procedure we described in the previous section can
be amended to deal with this case by handling subtokens.
Each token ti now consists of a concatenation (denoted by
the � symbol) of ni subtokens sij :

ti ¼ si1 � si2 � . . .� sini : ð1Þ

Each subtoken covers the maximal character sequence that
appears continuous on all tokens associated with that part of
a given equivalence class. As an example, the identifier
h_tailname in Fig. 5 will be processed as h_ � tailname.
Semantic equivalence is still determined in terms of tokens,
but equivalence classes can now consist of subtokens. When
two tokens t1 and t2 are found to be semantically equivalent,
these are processed with the following algorithm.

1. Make t1 and t2 consist of n0 subtokens

ti ¼ s0i1 � s0i2 � . . .� s0in0 ð2Þ

of correspondingly equal length:

8j 2 ½1 . . .n0� : lenðs01jÞ ¼ lenðs02jÞ: ð3Þ

This operation is performed by splitting appropriate
subtokens (correctly adjusting the corresponding
equivalence classes) so that, in the end, the set of
split positions of both tokens is the union of the split

positions of each token, i.e., both tokens are split at
exactly the same positions:

8i 2 f1; 2g
Xn0

j¼1

lenðs0ijÞ

2
[2
i¼1

j ¼ 1 . . .ni :
Xj

k¼1

lenðsijÞ
( )

:

ð4Þ

As an example, if the token h_ � tailname was
found to be semantically equivalent with the token
h_tail � name, both tokens would be split into h_

� tail � name.
Every time a subtoken u 2 E� is split into new

subtokens u1; u2 : u1 � u2 ¼ u, its equivalence class
E� is removed from V and split into E�1

and E�2
in a

way that satisfies the following:

8v 2 E� : v ¼ v1 � v2 ^ lenðv1Þ ¼ lenðu1Þ
^ lenðv2Þ ¼ lenðu2Þ ,

v1 2 E�1
^ v2 2 E�2

:

ð5Þ

2. For each equal length subtoken pair s01i ; s
0
2i
: s01i 2 E�

^s02i 2 E�, merge E� with E� by creating a new

equivalence class E� : E� ¼ E� [ E�, adding E� into V
and removing from V E� and E�.

Thus, the semantic unification of h_ � tailname (where
h 2 A and tailname 2 B) with h_tailname (where
h tailname 2 C) would be performed by first splitting C

into C1 (containing tokens of length 2) and C2 (containing
tokens of length 8) and having

V0 ¼ V � fA;B;Cg þ fC1 [A;C2 [Bg:

3.4 Preprocessor Equivalence

The equivalence rules we have introduced up to this point
only cover the tokens emitted after the preprocessing phase.
To complete our solution, we need to consider tokens that
are internal to the preprocessing phase, i.e., the tokens that
appear on the left-hand side of the macro definitions. We
distinguish two types of tokens: macro names and macro
formal parameters. Both already belong to equivalence
classes as part of the initial program tokenization. These
classes need to be processed following the semantics of the
preprocessor. Because preprocessing is performed as part of
the process we described, the rather convoluted semantics
of the preprocessor have to be taken into account while
actually performing the requisite evaluation operations. In
particular, the scoping of macro definitions, as delineated
by #define and #undef pairs, has to be calculated as part
of the preprocessor operation.

Under the preprocessor regime, macro names are
semantically equivalent with the tokens they replace. When
a macro name token ta : ta 2 Ea replaces a token tb : tb 2 Eb

in the program body, the equivalence classes Ea and Eb are
to be merged following the process described in step 4 in
Section 3.2. In addition, multiple definitions of the same
macro with the same arguments and replacement should
unify both the macro name and its arguments and the

SPINELLIS: GLOBAL ANALYSIS AND TRANSFORMATIONS IN PREPROCESSED LANGUAGES 1025

Fig. 5. Equivalence classes in partial definitions, macro names, and

arguments.



corresponding replacement lists since they form legal
multiple definitions of the same macro [12, x 3.8.3].

The formal arguments of preprocessor macros are only
meaningful within the context of the actual macro defini-
tion. Therefore, each occurrence of a formal macro argu-
ment ta : ta 2 Ea found as a token tb : tb 2 Eb in the macro
body, shall result in the equivalence classes Ea and Eb being
merged following again the process described in step 4 in
Section 3.2.

An example of the issues described above is depicted in
Fig. 5. Note that the merged equivalence class (item 3) of the
macro PI will not be determined until the expansion of the
macro TWOPI as part of the area initialization as under the
ANSI C standard after a macro substitution the replacement
token sequence is repeatedly rescanned for more defined
identifiers [12, x 3.8.3.4].

4 COMPLICATIONS

The application of the method we described in the
previous section on real-world programs faces a number
of complications.

4.1 Conditional Compilation

Conditional compilation results in code parts that are not
always processed. Some of them may be mutually exclusive
defining, e.g., different operating system dependent ver-
sions of the same function. The problem can be handled
with multiple passes over the code, or by ignoring
conditional compilation commands. This process may need
to be guided by hand, because conditionally compiled code
sections are often specific to a particular compilation
environment.

4.2 Imported Libraries

A useful feature of our proposed method would be the
ability to protect the user from inadvertently modifying
identifiers reserved by the language, or the specific
programming environment. This can be accomplished by
marking the set of included header files that declare such
identifiers as read-only. Orderly administered compilation
environments are typically organized in this way using the
operating system file protection mechanisms. An equiva-
lence class Er that contains at least one token tr from a file
marked as read-only is considered immutable: No tokens in
that class can be modified. If any part of a token belongs to
an immutable class, then the whole token is considered
immutable.

4.3 Code Shared among Different Programs

Workspaces or program families are often composed of a
number of linkage units that loosely share many different
source files. As an example, consider tightly integrated
variants of Unix such as the Free/Net/OpenBSD systems
and the GNU/Linux distributions. The kernel, and many of
the tools share a number of project-wide, yet not part of the
ANSI or a POSIX standard libraries such a readline and ndbm.
It would be useful to be able to change public identifier
names in libraries shared among different programs and
have the changes propagated to all source code using them.
The basis of our approach can be extended to cover such

cases by keeping a global table of equivalence classes for all
programs (linkage units) belonging to a workspace. Note
that no semantic or syntactic information is associated with
the equivalence classes that span linkage units. Each
equivalence class is just a collection of tokens falling under
the equivalence rules observed while processing each
compilation and linkage unit.

4.4 Dead and Partially Used Code

The method we described will not update code in macro
definitions that are never used. In order to establish
semantic equivalence between identifiers appearing in the
body of a macro and other code, the macro has to be
applied. Identifiers in macros that are never applied will
therefore never be merged with other identifiers and will
consequently never be updated. The best that can be done
in this case is to flag such macro definitions, warning the
user that these will not be updated. A user could then create
dummy code to exercise those macros. A similar problem
can occur for macro definitions that are not exercised over
the full range of their applicable arguments. As an example,
the polymorphic accessor macro val we examined in Fig. 4
could not be used to identify that a field v of a third
structure sc belonged to the same equivalence class unless
the macro was applied to at least one variable containing or
pointing to such a structure. In both cases, the transformed
programs would be entirely correct and semantically
equivalent to the original ones, but would be stylistically
lacking; a human operator could identify by context the
meaning of an unused macro or the full applicability range
of a partially used one and perform additional modifica-
tions. In addition, future maintenance changes could apply
the macro to other structures resulting in a program that
would not compile.

4.5 Undefined Macros

In the C language the use of an undeclared function acts as
an implicit declaration for an int-returning function
without parameter information [12, x 3.3.2.2]. Undefined
macros are not however handled in the same way in the
C preprocessor. Thus, the common idiom used for protect-
ing header files against multiple inclusion

#ifndef HEADER_INCLUDED

/* Header code */

#define HEADER_INCLUDED

#endif /* HEADER_INCLUDED */

will not unify the (originally undefined) macro HEADER

_INCLUDEDwith its subsequent definition. Similarly, multi-
ple tests against the same undefinedmacro name, often used
to conditionally compile nonportable code, will fail to unify
with each other. The first problem can be solved by including
all headers at least twice; hardly an ideal proposition. Both
problems can also be solved by employing heuristic
techniques or manually defining the macros before the
corresponding test. None of the solutions is completely error-
proof: A heuristic unifying undefined macros with a
subsequent definition may fail in cases where the two are
not related; the manual definition of a macro may cause the
program to be processed in ways that are not appropriate for
a given compilation environment.
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5 THE CSCOUT TOOLCHEST

We tested the viability of our approach by designing and
implementing the CScout processing engine and associated
back-end tools.

5.1 Functional Description

CScout can analyze collections of C programs and yacc [37]
parser specifications to determine the equivalence classes of
their identifiers. The processing involves preprocessing,
parsing, and semantic analysis according to the approach
we outlined in the previous sections. The resulting data
structure can then be queried to determine the equivalence
class of an identifier starting at a particular offset in a given
file. In addition, methods associated with equivalence class
objects return the number of members of an identifier class,
as well as semantic properties of the equivalence class
members. A domain specific language [38] is used to
specify in detail how the source files are to be processed in
terms of directory contents, preprocessor definitions,
include file paths, read-only files, and the composition of
linkage units. Based on the facilities provided by the CScout
processing engine, we implemented three different back
end tools.

The refactoring browser provides a Web-based interface to
a system’s source code and its identifiers for examining the
source and aiding the realization of rename (e.g., “rename-
variable” [39]) and remove (e.g., “Remove Parameter” [4])
refactorings. Using the swill embedded Web server library
[40], the analyzed source code collection can be browsed by
connecting a Web client to the tool’s HTTP-server interface.
Each identifier is linked to a Web page containing details of
the equivalence class it belongs to. A set of hyperlinks
allows users to

. Browse file and identifier names belonging to
various semantic categories (e.g., read-only files,
file-spanning identifiers, or unused identifiers).

. Examine the source code of individual files with
hyperlinks allowing the navigation from each
identifier to its equivalence class page.

. Specify identifier queries based on the identifier’s
namespace, scope, and name, and whether the
identifier is writable, crosses a file boundary, is
unused, occurs in files of a given name, is used as a
typedef, or is a (possibly undefined) macro, or macro
argument. The file and identifier names can also be
specified in the query as regular expressions.

. Specify file queries based on the calculated file
metrics, such as the number of defined functions,
C statements, or preprocessor directives.

. View the semantic information associated with the
identifiers of each equivalence class. Users can find
out whether the equivalence class is read-only (i.e.,
at least one of its identifiers resides in a read-only
file), and whether its identifiers are used as macros,
macro arguments, structure, union, or enumeration
tags, structure or union members, labels, typedefs, or
as ordinary identifiers. In addition, users can see if
the identifier’s scope is limited to a single file, if it is
unused (i.e., appears exactly once in the file set), the

files it appears in, and the projects (linkage units)
that use it. Unused identifiers point to functions,
macros, variables, type names, structure, union, or
enumeration members or tags, labels, or formal
function parameters that can be safely removed from
the program.

. Substitute a given equivalence class’s identifier with
a new user-specified name.

. Write back the changed identifiers into the respec-
tive source code files. A single pass through each
processed source file will identify file offsets that
mark the starting point of an equivalence class
associated with a changed identifier name and
substitute the number of characters that comprised
the old identifier name with the new name. Thus, the
only changes visible in the program will be the
modified identifier names.

The above functionality can be used to semiautomatically
perform rename and identify candidates for remove
refactorings. Name clashes occurring in a rename refactor-
ing are not detected since this feature would require
reprocessing the entire source code base—a time consuming
process. Remove refactorings can be trivially performed by
hand, after identifiers that occur exactly once have been
automatically and accurately identified.

The obfuscate back-end systematically renames the
identifiers belonging to each equivalence class, thus creat-
ing a program representation that hinders reverse-engineer-
ing attempts. This source (with appropriate selection of the
specified read-only files) will remain portable across
architectures, and can be used as an architecture-neutral
distribution format such as the one proposed by Hansen
and Toft [41]. Since the source is distributed in its
nonpreprocessed form, portability problems stemming
from different contents of included files across systems
are obviated. Furthermore, adding to the set of read-only
files the system’s source files where configuration informa-
tion is specified (e.g., config.h) will result in a source
code base where the configuration commands and macros
are still readable and can be tailored to a given platform.

Finally, the SQL back end provides additional analysis
and processing flexibility through the use of SQL com-
mands. The SQL back end creates an ANSI SQL-92 script that
contains all equivalence class properties and represents all
links between equivalence classes, tokens, files, and
projects. The scripts have been tested with Postgres and
the embeddable, Java-based hsqldb databases. All program
text that is not part of identifiers is stored in a separate
database table allowing the complete source file base to be
reconstituted from a (potentially modified) database.

5.2 Implementation Outline

CScout integrates in a single process the functionality of a
multiproject build engine, an ANSI C preprocessor, and the
parts of a C compiler up to and including the semantic
analysis based on types.

The build engine functionality is required so that CScout
will process multiple compilation and link units as a single
batch. Only in this way can CScout detect dependencies
across different files and projects. Each compilation unit can
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reside in a different directory and can require processing
using different macro definitions or a different include file
path. In a normal build process, these options are typically
specified in a Makefile [42]. The CScout operation is similarly
guided by a declarative workspace definition file.

The C preprocessor part converts the source code input
into C preprocessor tokens. It tags each token with the file
and offset where it occurs, and creates a separate
equivalence class for each token. Operating system-specific
system calls are used to ensure that files included by
various compilation units using different names (e.g.,
through distinct directory paths or by following hard and
symbolic links) are internally identified as the same source
file. The preprocessor part performs the normal C pre-
processor functions we described in Section 2.1. When
defining and replacing macros and when evaluating
preprocessor expressions CScout will merge equivalence
classes as described in Section 3.4.

The semantic analysis part reclassifies the preprocessed

tokens according to the (slightly different) token definition

of the C language proper and follows the language’s

scoping and namespace rules to determine when two

identifiers are semantically equivalent in the sense we

described in Section 3.1. During this phase, each object

identifier token is tagged with enough type information to

allow the correct classification of structure and union

member names appearing on the right of the respective

access operators. A vector of symbol table stacks is used to

implement the language’s scopes and namespaces. Each

time a symbol table lookup determines that the token

currently being processed is semantically equivalent with a

token already stored in the symbol table the corresponding

equivalence classes are merged together.
The equivalence class merge operations we described in

the previous two paragraphs are always performed taking
into account the partial lexical equivalence rules we
described in Section 3.3. If one of the two unified tokens
consists of subtokens, the corresponding equivalence
classes are split, if required, and then appropriately merged.

At the end of the semantic analysis phase, every token

processed can be uniquely identified by its file and offset

tuple tðf; oÞ and is associated with a single equivalence

class: t 2 Et. This data structure can be saved into a

relational database for further processing. Equivalence

classes containing only a single C identifier denote unused

identifiers that the CScout user should probably delete. The

first step for renaming an identifier involves associating a

new name with the identifier’s equivalence class. After all

rename operations have been specified and the changes to

the source code are to be committed, each source file is

reprocessed. When the read offset o0 of a file f 0 being read

matches an existing token t0ðf 0; o0Þ, its equivalence class Et0

is examined. If the equivalence class has a new identifier n

associated with it, CScout will read and discard lenðt0Þ
characters from the file and write n in their place. Creating a

version of a file with identifier hyperlinks involves similar

processing with the difference that all identifier tokens are

tagged with a hyperlink to their equivalence class. Finally,

obfuscating the source code involves associating a new

random unique identifier replacement with each equiva-

lence class.

5.3 Performance Indicators

The operation of CScout spans three different processing
levels that are typically abstracted and individually
performed in most C/C++ environments: preprocessing,
compilation, and linking. Thus, at a given point of its
operation, CScout may contain details about identifiers in
hundreds of programs, thousands of source code files, and
many more include files. The resulting toll on the use of
memory and CPU resources is considerable and used to be
prohibitive [43], but, thanks to the rapid increases of
memory capacities and CPU speeds we are constantly
witnessing, is now tolerable. In fact, we argue that software
engineering tools have in many cases failed to utilize the
hardware resources currently available on a typical work-
station; CScout is an exception to this phenomenon.

Quantifying the performance of CScout, we note that the
time required to process an application is about 1.5 times
that required to compile it using the GNU C compiler with
the default optimization level. The memory resources
required are considerable and average about 560-620 bytes
per source line processed. We have successfully used
CScout to process medium sized projects, such as the apache
Web server and the FreeBSD kernel, and have calculated
that the analysis of multimillion source code collections
(such as an entire operating system distribution) is not
beyond the processing capability of a modern high-end
server. Specifically, we estimate that our current imple-
mentation could process the complete FreeBSD system
distribution (6 million lines of C code) on a 1GHz processor
in three hours using 3.5GB of memory.

6 CONCLUSION

This paper presents a class of algorithms and tools for
automatically analyzing and renaming identifier instances
in languages that employ a macro preprocessing phase as
part of the compilation cycle. Although preprocessing is not
part of newly developed languages, large bodies of code
written in languages such as C and C++ are still being
developed and also need to evolve and be maintained. It is
believed that tools based on the algorithms we outlined
significantly enhance the arsenal of software developers
writing and maintaining programs in C and C++.

6.1 Contribution

The contributions of our research can be categorized into
the areas of software engineering tools and their applica-
tions, and programming language semantics. In the
previous sections, we described an approach for precisely
analyzing and processing identifiers in program families
written in languages that incorporate a preprocessing step
such as C and C++. Earlier research [5] indicated that it was
not possible to handle the problem of preprocessing for
refactoring C++ programs; our approach, although limited
in the scope of the supported refactorings, can be extended
to cover additional cases. Our method can also be
incorporated into analysis systems such as the Wisconsin
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Program-Slicing Project [44] that only handle a small subset
of the C preprocessor.

The CScout toolchest we implemented demonstrates how
a family of C programs can be analyzed to support: simple
refactorings, a one-to-one semantic mapping of the com-
plete source to a relational database, a robust architecture-
neutral obfuscated code distribution format, and the
extraction of semantically-rich metrics with exact references
to the original source code. The use of a general-purpose
database schema for storing the source’s semantic informa-
tion, effectively isolates the analysis engine from the
numerous transformations and metric extraction operations
that can be performed on the source, providing flexibility,
domain specificity, and efficiency.

6.2 Critique

As was outlined in Section 4, there are pathological cases of
code that are not covered by our approach. Although the
exceptions are minor and would probably be never
encountered in routine maintenance applications, they can
decrease the trust programmers place on the tools using the
proposed approach.

The absence of a name clash error checking facility in the
CScout refactoring browser can be a problem, but it is an
attribute of the implementation and not an inherent short-
coming of our method. Early on, we decided to dispose
semantic information from memory once a scope had been
processed so as to be able to handle software systems of a
realistic size.

The CScout tools can process C, yacc and many popular C
language extensions, but do not (yet) cover C++. Although
the method clearly applies to C++, the effort to parse and
semantically analyze C++ programs is an order of magni-
tude larger than the scope of the project we had planned.
Furthermore, enhancing the refactoring browser or the
database representation to cover some common object-
oriented refactorings would be an even more complex task.

6.3 Extensions

The tools developed here can be extended in a number of
ways.

First of all, the CScout tools should be able to parse and
analyze other common languages such as C++, the lex
program generator [37], and symbolic (assembly) code.
Given that many projects automatically generate C code
from specifications expressed in a domain specific language
[31], we are currently experimenting with lightweight front
ends that transform DSL programs into C code annotated
with precise backreferences to the original DSL file. CScout
will then be able to parse the synthetic code as C, but will
display and modify the original DSL source code. Such
capabilities will extend CScout’s reach to a wider set of very
large program families. In addition, the database schema
used can be extended to separate code lines, and separately
store and identify comments, strings, and, possibly, other
constants. These last modifications will allow more sophis-
ticated operations to be performed on the source code body
employing a unified approach. Identifiers could also
contain additional semantic information on their precise
scope, type, as well as the structures and unions members
belong to.

A related aspect of improvement concerns the integra-

tion with configuration and revision management tools.

Large changes to source code bases, such as those that can

be made by CScout, should be atomic operations. Although

revision-control operations can currently be introduced into

the modification sequence using a scripting language, a

facility offering standardized hooks for specifying how the

modifications are to be performed might be preferable.
Finally, the most ambitious extension concerns not the

tool, but the theory behind its operation. Given that C/C++

code can now be directly modified in a limited way in its

nonpreprocessed form, it is surely worthwhile to examine

what other larger refactoring operations can be safely

performed using similar techniques. These would necessi-

tate the marking of syntactic structure in the token

sequences to allow rearrangements at the parse tree level.

The effect the preprocessor facilities have on the representa-

tion of these structures, and methods that can mitigate these

effects are currently open questions.
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