
Security architectures for network clients

Victoria Skoularidou
Systems Engineer, Department of Management Science and Technology,
Athens University of Economics and Business (AUEB), Athens, Greece
Diomidis Spinellis
Assistant Professor, Department of Management Science and Technology,
Athens University of Economics and Business (AUEB), Athens, Greece

Introduction

Despite effort being expended to secure

network clients, these are increasingly and

continuously succumbing to malicious

software (viruses, worms, and Trojan

horses). As the same client is nowadays

trusted to conduct financial transactions or

store and process sensitive personal

information, users deserve to be assured of a

higher level of security than what is

currently the norm. In this paper we review,

from an architectural standpoint,

methodologies and technologies that can be

used towards this end.

According to Ghosh (1998) the security of

Web-based systems should be ensured in four

fronts: Web client, data transport, Web server

and operating system security. In this survey

paper, we focus on the network client side

and examine a number of architectures and

technologies that can be used for protecting

the integrity of the clients and their

environment. With the term `̀ client’’ we refer

to Web clients, e-mail clients, access clients

(like ftp and/or telnet), and similar

applications. These architectures have either

been proposed as methodologies, presented

in the next section, or are actual

implementations (in software and hardware)

currently in use and described in the

following two sections. The final section

draws the lessons of this study and compares

the security-enabling architectures that were

studied.

Methodologies

From the theoretical security models in

existence, some have been realized in

commercial product implementations while

others were abandoned and exist only as

concepts in the research community. In the

first category we can identify the notion of

the firewall and virtual machine while the

reference monitor model falls in the second

one. We provide a description of these models

in the following paragraphs.

The reference monitor security model
The reference monitor was based on the

abstract modeling efforts of Lampson (1971)

and was also described by Anderson (1972). It

is depicted in Figure 1 (Stallings, 1995).

The reference monitor is a controlling

element in the hardware and operating

system of a computer that regulates the

access of subjects (e.g. users, processes, etc.)

to objects (e.g. files, programs, etc.), on the

basis of their security parameters. It has

access to the security kernel database (SKDB)

that lists the access privileges of each subject

and the protection attributes of each object.

Any detected security violations and

authorised changes, are stored in an audit

file.

The reference monitor concept has inspired

research in the area of inline reference

monitors and language-based security

(Erlingsson and Schneider, 1999, 2000).

One major problem of the reference

monitor concept is that it is too complex and

requires the developer to start with a totally

new operating system (and probably

hardware) design (Lobel, 1986). Another

problem is that early attempts to reproduce it

in actual hardware and software met with

only minimal success, primarily because of

unexpectedly high overhead and/or system

performance degradation. One historical

example is the operating system MULTICS

(Organick, 1972), developed in the late 1960s

by MIT, Bell Labs, and Honeywell.

However, supposing that the reference

monitor was implemented as a part of a

system, then a network client could be

protected in the following way: let’s imagine

The Emerald Research Register for this journal is available at

http://www.emeraldinsight.com/researchregister
The current issue and full text archive of this journal is available at

http://www.em eraldinsight.com /0968-5227.htm

[84]

Information Management &
Computer Security
11/2 [2003] 84-91

MCB UP Limited
[ISSN 0968-5227]
[DOI 10.1108/09685220310468664]

Keywords
Security, Computer architectures,
Networks, Clients, Software

Abstract
Enumerates and compares a
number of security-enabling

architectures for network clients.
These architectures, either
proposed as methodologies or

currently implemented in software
and/or hardware, are capable of
protecting the client’s software

integrity and its environment. The
most important methodologies
include the reference monitor

model, firewalls, and virtual
machines. Software
implementations are the Java

Sandbox, and the code signing
concept. Hardware that can be

used includes smart cards, and
the TCPA/Palladium security
initiative. Describes their most

important features and provide a
review and comparative study

based on a number of criteria.
Believes that ongoing research
can empower these mechanisms
for protecting network clients in a

more effective way.

An earlier version of this
work appeared in the
Proceedings of the 3rd
International Network
Conference (INC 2002),
16-18 July, Plymouth, UK,
pp. 389-96.

http://www.emeraldinsight.com/researchregister
http://www.emeraldinsight.com/0968-5227.htm

that a UNIX system user navigates with the

Web browser into a number of Web sites.

According to the reference monitor’s policy,

described in the SKDB, as a subject, the only

privilege the user has is the capability of

saving Web pages, files, etc. in the directory

`̀ Internet_files’’ of the mounted hard disk (the

corresponding object). If a malicious applet is

downloaded on the user’s machine and tries

to gain root privileges by, e.g. executing a

SUID program, it will simply fail since the

reference monitor will deny access,

according to the previous security policy.

The same applies with the user’s mail client.

If the user is only allowed to save

attachments on the disk storage then a rogue

program could not harm the system, as the

reference monitor would prevent any

compromise.

The firewall concept
Properly configured firewalls can constitute

an effective type of network security. They

prevent the dangers of the Internet from

spreading into the internal network by

restricting access at a centrally managed

point.

Firewalls are classified into three main

categories (Cheswick and Bellovin, 1994):

1 packet filters that drop packets based on

their destination address and port;

2 circuit gateways that relay TCP

connections; and

3 application-level gateways where special-

purpose code is used for each desired

application (making it easy to log and

control all incoming and outgoing traffic).

Application-level gateways can provide a

centralized point for monitoring the behavior

of an electronic mail system and they can

analyze and record traffic and content

looking for information leaks. Their

principal disadvantage is the need for a

specialized user program for most services

provided. Also, the use of such gateways is

easiest with applications that make provision

for redirection, such as e-mail, otherwise new

client programs must be provided.

Another category of firewalls, becoming

increasingly popular, is the personal

firewalls that can be useful for preventing

and even detecting potential spyware and

also protecting from malicious executables

(Ghosh, 2001). However, they cannot help in

the detection of spyware that is

masquerading in programs that use the

network for other legitimate purposes.

To recapitulate, firewalls are not panacea,

since they must be properly configured and

regularly updated as new threats and

vulnerabilities are discovered (Zwicky et al.,

2000). They offer only one layer of protection

and cannot be considered a full security

solution since they cannot protect from

insider attacks (Garfinkel and Spafford, 2002)

and cannot block encrypted information or

traffic tunneled via HTTP although some

solutions have been provided (Martin et al.,

1997).

The virtual machine concept
A virtual machine is a piece of computer

software designed to reproduce a specific set

of computer behaviors and capabilities other

than the ones native to the computer or

operating system on which the software itself

is running. Some virtual machines are

emulators; others produce behaviors and

capabilities of a machine that doesn’t

necessarily exist as an actual piece of

hardware but may only be a detailed

specification. More modern examples include

the specification of the Java Virtual Machine

(JVM) (Lindhorn and Yellin, 1997) and the

common language infrastructure of the

Microsoft.NET initiative. These allow

diverse computers to run software written to

that specification; the virtual machine

software itself must be written separately for

each type of computer on which it runs.

Other virtual machines let one operating

system run on top of another on the same

machine (VMware Inc., 2000).

The virtual machine design has two

advantages:

1 system independence, since any

application will run the same in any

virtual machine, regardless of the

hardware and software underlying the

system;

2 security, because the virtual machine has

no contact with the operating system,

hence there is little possibility of a

program damaging other files or

applications.

The virtual machine can be used to sandbox

applications since it stands between the real

hardware or another operating system layer

(the virtual machine is often an operating

system). This, of course, has a downside

concerning efficiency, because operating

system calls and privileged instructions of

Figure 1
The reference monitor concept

[85]

Victoria Skoularidou and
Diomidis Spinellis
Security architectures for
network clients

Information Management &
Computer Security
11/2 [2003] 84-91

programs running in a virtual machine have

to pass through the virtual machine layer.

Thus, virtual machines like JVM and

VMware also provide a restricted

environment in which programs may

operate. Errant applications should only be

able to cause damage to the virtual machine,

thus leaving the real system intact.

Software implementations

Here, we present network client security

architectures currently implemented in

software that allow the secure execution of

downloadable executable content (i.e. mobile

code).

The Java Sandbox
The concept of sandbox or software fault

isolation was first described in (Wahbe et al.,

1993). The Java Sandbox is Java’s security

model, by which any untrusted Java applet

must abide. It is a technological solution to

prevent malicious code behavior, thus

protecting a network client from possible

attacks. For example, if a user downloads via

the Web browser an applet that tries to erase

the user’s hard disk, it will fail because the

sandbox restricts its operation, since it is

untrusted. The Java Sandbox is enforced by

three technologies:

1 the bytecode verifier;

2 the applet class loader; and

3 the security manager (McGraw and

Felten, 2000).

The Java Sandbox is quite complicated but it

is one of the most complete existing security

models. The problem is that the three

technologies comprising the model work in

concert to prevent an applet from abusing its

restricted privileges. They are highly

interdependent and non-overlapping.

Because each one provides a different

function, a flaw in one can break the whole

sandbox (McGraw and Felten, 1997). So, their

design must be solid, and their

implementations must not be flawed. The

complexity of the functions that each

technology provides makes a correct

implementation a difficult goal to attain. The

Java security problems found to date are a

direct result of flaws in these functions’

implementations (Ghosh, 1998).

The Java security model continued to

evolve with new Java releases (Gong et al.,

1997). JDK 1.2 introduced a more flexible

security model in which the class loader can

assign a different security policy to each

class as it is loaded and stack inspection

(Wallach and Felten, 1998) is used to

determine what privileges are enabled. It

also introduced the notion of protection

domains and the access controller as a more

abstract and flexible alternative to the

security manager.

Code signing
Modern component-based software is a lot

harder to secure because:

1 one cannot assume that all the modules

are trustworthy;

2 one cannot assume that all the modules

are written well enough to work in every

possible configuration; and

3 the operating system is not there to deal

with 1 and 2, since modern components

talk to each other directly, not through the

operating system, so any built-in safety

features simply do not apply.

Several general methods for dealing with this

security problem have been tried, like code

signing. The programmer signs components

and the user decides, based on the signatures,

which components to allow on the computer.

Sun’s Java and Microsoft’s ActiveX controls

provide code-signing features.

The Java Sandbox very simply and strictly

prevents Java applets downloaded from the

network from using sensitive system

services. The security policy for untrusted

applets is black-and-white (Ghosh, 1998): if

applets are downloaded across a network

connection, they must abide by the strict

constraints of the sandbox; if they are loaded

from the local file system, they are

completely trusted and given free rein of the

system, as Java applications do.

To provide greater flexibility to run Java

applets in a trusted environment, JavaSoft

has provided the ability to sign applets using

JDK’s 1.1 Crypto API. It provides the ability

to digitally sign applets with unforgeable

proof of identity (Gritzalis et al., 1998). In this

way, applets access system resources based

on who signs them. The black-and-white

security policy for executing applets in JDK

1.1 changed to a shades-of-gray model in JDK

1.2 where more fine-grained access control is

supported.

ActiveX is a framework for Microsoft’s

software component technology that allows

programs encapsulated in units called

controls to be embedded in Web pages

(Ghosh, 1998). Unlike Java, ActiveX is

language independent but platform specific.

The controls can be written in several

different languages but can be executed only

on a 32-bit Windows platform. Since ActiveX

controls have the ability to execute much like

any other program on a computer, they may

be used to forge e-mail and write files

(integrity loss), monitor Web usage, send files

over the Internet and interact with other

programs (threat to privacy and

[86]

Victoria Skoularidou and
Diomidis Spinellis
Security architectures for
network clients

Information Management &
Computer Security
11/2 [2003] 84-91

confidentiality through information leaks),

etc.

Microsoft’s response to addressing ActiveX

technology security problems is

Authenticode (Microsoft Corp., 2001). This

does not prevent ActiveX controls from

behaving maliciously but it can be used to

prevent automatic execution of untrusted

ones. Authenticode can provide two checks

before executing ActiveX controls: it can

verify who signs the code (authentication),

and if the code has been altered since it was

signed (integrity). Authenticode provides

verification of the identity of the person who

signed the control and integrity checks of the

software to ensure it has not been altered

since it was signed. However, the signature

provides no assurance that the control will

not behave maliciously. Authenticode

technology works solely on a trust model and

there is no middle ground to let the control

execute in a constrained environment where

it can be observed before granting full access.

The key difference in security between

ActiveX controls and Java applets is that

ActiveX security is based wholly on the trust

placed in the code signer, while Java applet

security is based on restricting the behavior

of the applet (Ghosh, 1998). One is a human

judgment-based approach to security, while

the other is a technology-based approach

using the sandbox solution. Java applets

signing has been also introduced by JavaSoft

as a policy based on trust and human

judgment. Signed applets have the ability to

access system resources based on who signed

them, but untrusted ones can still execute,

albeit with the sandbox limitations.

Other techniques for trying to provide

proofs in software code include proof

carrying code (Necula and Lee, 1996) and

efficient code certification described in

Kozen (1998).

In summary, code signing does prove the

integrity and authenticity of a piece of

software purchased in a computer store or

downloaded over the Internet. But it does not

promote accountability, because it is nearly

impossible to tell if a piece of software is

malicious or will behave in a malicious

manner (Garfinkel and Spafford, 2002).

Research in certifying software components

for security properties has been conducted

(Ghosh and McGraw, 1998).

Hardware implementations

So far, security-enabling architectures that

were proposed as methodologies or are based

on software implementations were examined.

In this section, we describe hardware-based

ones.

Smart cards
A smart card stores and processes

information through the electronic circuits

embedded in silicon in the plastic substrate

of its body. There are two basic kinds of

smart cards (Chen, 1998): an intelligent smart

card contains a microprocessor and a

memory chip and offers read, write, and

calculation capability. A memory card

contains only a memory chip, is meant only

for information storage and can only

undertake a predefined operation. Smart

cards can carry all necessary functions and

information on the card, so they do not

require access to remote databases at the

time of the transaction.

Their benefits of increased storage,

security and portability have made them

very popular compared with magnetic stripe

cards, that are not so secure, require a host

system to store and process all data and

cannot make data universally accessible

(Coleman, 1998). By putting sensitive

information like passwords and encryption

keys into a central point like the card and,

thus, outside of the client’s environment, the

client becomes less vulnerable to malicious

attacks. Typically any application requiring

authentication can benefit from a smart card.

Smart cards can be used for authentication

and as a secure, convenient portable storage

mechanism.

On the other hand there also exist

problems: if a hacker takes the control of the

client he could force the card to do something

the client does not want like giving his credit

card information to a malicious site (Balfanz

and Felten, 1999). Also, since smart cards

blindly sign any data that is sent to them the

user has no way of verifying that this data is

what he wanted to be signed (Freudenthal et

al., 2000). In such a case a hacker could

modify the signing software so that it makes

changes to a document before it is signed. As

a result the user may see one document, but

sign something else.

With the advent of the Java Card (a smart

card capable of running Java bytecodes)

limitations like the portability of applications

and the flexibility of downloading

applications into the card are eliminated,

since a single Java application can run on all

smart cards (Coleman, 1998). Since one of the

fundamental problems in securing computer

systems is the need for tamper-resistant

storage of keys, smart cards can provide this

functionality so that the private key of the

network client can be placed on it and the

access control on the card is offered via a

[87]

Victoria Skoularidou and
Diomidis Spinellis
Security architectures for
network clients

Information Management &
Computer Security
11/2 [2003] 84-91

proper personal identification number (PIN).

Smart cards provide also the ability to

upgrade security solutions when they become

compromised, e.g. if a hacker cracks the

security of smart-card enabled digital satellite

systems new cardlets (Java Card

applications) could be sent.

The fact that smart cards now employ

public key encryption to both encrypt data

and digitally sign messages to provide

unforgeable proof of identity, makes them

ideal for integrating into them applications

like social security card, access control to Web

sites or online databases, digital signatures

for e-mail and Web transactions, public keys

for encrypting data transactions, credit/debit

cards, e-cash, etc. (Ghosh, 1998). Smart cards’

importance has been identified by major

credit card organizations like Visa, which has

recently announced its chip migration plan

(Visa International, 2001) involving the

substitution of credit cards with new ones

with a microchip, more suitable for e-banking

and e-commerce applications.

Trusted hardware
Palladium, which like the chemists,

Microsoft calls `̀ Pd’’ in short (Microsoft

Corp., 2002), is Microsoft’s implementation of

the Trusted Computing Platform Alliance

(TCPA) specification. The TCPA is an

industry-working group, initially formed by

Compaq, HP, IBM, Intel, and Microsoft in

October 1999 with the mission to: `̀ . . . create a

new computing platform for the next century

that will provide for improved trust in the PC

platform’’, thus build a trusted computer

(TCPA, 2000). TCPA now lists about 200

corporate members and has already

published the TCPA Specification, v1.1.

Palladium is distinct from TCPA and does

not follow the specification exactly. The idea

is that a trusted computer can be built where

different users on the system have

limitations in their abilities and are isolated

from each other (compartmentalization).

This is impossible to achieve using only

software, and Palladium is a combination of

hardware and software modules (Schneier,

2002). Palladium and TCPA have some

architectural points in common, such as the

use of `̀ trusted hardware’’ within a PC in

order to establish a root of trust. They both

require modifications to existing hardware

architecture in order to work and also

modifications to software in order to use

trust features. As the two initiatives appear

to be interrelated, in the rest of the paper we

will use the term `̀ TCPA/Palladium’’.

TCPA/Palladium requires changes to four

parts of the PC hardware:

1 the CPU;

2 the chipset (on the motherboard);

3 the input devices (i.e. mouse, keyboard,

etc.); and

4 the video output devices (graphics

processor).

Additionally, a new component must be

added, a tamper-resistant secure

cryptographic co-processor, which Microsoft

calls SCP or SPP (Schoen, 2002).

TCPA/Palladium provides protection

against two broad classes of attacks:

1 remote network-mounted attacks (buffer

overflows, other programming flaws,

malicious mobile code, etc.); and

2 local software-based attacks (e.g. a

debugger trying to read a program’s

internal state while executing or trying to

subvert its policy).

Although TCPA/Palladium is a promising

effort for providing trusted computing

platforms it is not without problems. Threats

to privacy, interference with GNU Public

License, restriction of fair use rights (ability

to copy and use copyrighted material for

personal use) and the `̀ First sales doctrine’’

(ability to resell software or a Palladium-

equipped computer) have been extensively

discussed in the literature (Anderson, 2002;

Arbaugh, 2002).

Review and comparison

After presenting the various types of

security-enabling architectures, in this

Table I
Protection against security threats

Lea kage Tam p erin g
Re so urce
ste alin g R ep udiat ion M alw are

U ser
ign oranc e

R efere nce m on itor 3 3 3 3 3

F irew alls 3 3 3 3 3

V irtua l m ac hines 3 3 3 3 3

Java S andbo x 3 3 3 3 3

C od e signing 3

S m art cards 3 3 3 3 3

T CP A/ P allad ium 3 3 3 3 3 3

[88]

Victoria Skoularidou and
Diomidis Spinellis
Security architectures for
network clients

Information Management &
Computer Security
11/2 [2003] 84-91

T
a
b
le

II
N

o
n
-f
u

n
c
ti

o
n
a
l

c
h
a
ra

c
te

ri
s
ti

c
s

o
f

th
e

d
e
sc

ri
b
e

d
te

c
h
n
o
lo

g
ie

s

Le
ve

l
of

pr
ot

ec
ti

on
an

d
se

cu
ri

ty
se

rv
ic

e
pr

ov
id

ed
C

om
pl

ex
it

y
Ea

se
of

us
e

In
co

rp
or

at
io

n
in

to
ex

is
ti

ng
ap

pl
ic

at
io

ns

R
ef

er
en

ce
m

on
it

or
O

ff
er

s
a

hi
gh

le
ve

l
of

pr
ot

ec
ti

on
by

re
si

di
ng

at
th

e
lo

w
es

t
sy

st
em

la
ye

r.
A

dd
in

g
se

cu
ri

ty
to

th
e

lo
w

es
t

le
ve

l
au

to
m

at
ic

al
ly

se
cu

re
s

al
l

th
e

ab
ov

e
la

ye
rs

(S
al

tz
er

et
al

.,
1

9
8

4
)

V
er

y
co

m
pl

ex
si

nc
e

it
ne

ed
s

ne
w

op
er

at
in

g
sy

st
em

de
si

gn
A

ne
w

op
er

at
in

g
sy

st
em

w
it

h
sy

st
em

ca
lls

ba
se

d
on

th
e

re
fe

re
nc

e
m

on
it

or
w

ou
ld

be
di

ff
ic

ul
t

to
us

e

P
re

su
m

es
a

ne
w

op
er

at
in

g
sy

st
em

(a
nd

m
ay

be
ha

rd
w

ar
e)

de
si

gn

Fi
re

w
al

ls
B

es
t

so
lu

ti
on

fo
r

se
pa

ra
ti

ng
th

e
in

te
rn

al
ne

tw
or

k
bu

t
ca

nn
ot

pr
ov

id
e

pr
ot

ec
ti

on
ag

ai
ns

t
m

al
ic

io
us

in
si

de
rs

.
A

n
ap

pl
ic

at
io

n-
le

ve
l

ga
te

w
ay

ca
n

pr
ov

id
e

be
tt

er
pr

ot
ec

ti
on

th
an

a
pa

ck
et

fil
te

r
si

nc
e

it
do

es
no

t
re

ly
on

ly
on

ad
dr

es
se

s
an

d
po

rt
s

Th
ei

r
in

st
al

la
ti

on
re

qu
ir

es
th

e
co

nf
ig

ur
at

io
n

of
a

nu
m

be
r

of
de

vi
ce

s
Th

ey
ne

ed
in

st
al

la
ti

on
an

d
co

nf
ig

ur
at

io
n

pr
oc

ed
ur

es
Th

ei
r

co
nf

ig
ur

at
io

n
ca

n
be

ea
si

ly
pr

ov
id

ed

V
ir

tu
al

m
ac

hi
ne

s
Th

ey
pr

ov
id

e
se

pa
ra

ti
on

an
d

is
ol

at
io

n
of

pr
oc

es
se

s
R

ea
liz

at
io

n
re

qu
ir

es
th

e
in

st
al

la
ti

on
of

a
pr

op
er

pa
ck

ag
e

Th
ey

ne
ed

in
st

al
la

ti
on

an
d

co
nf

ig
ur

at
io

n
pr

oc
ed

ur
es

C
an

be
ea

si
ly

in
st

al
le

d
on

a
sy

st
em

in
or

de
r

to
m

ak
e

it
ca

pa
bl

e
of

ac
ce

ss
in

g
an

ot
he

r
on

e

Ja
va

S
an

db
ox

Id
ea

l
fo

r
m

ob
ile

co
de

si
nc

e
it

ca
n

pr
ot

ec
t

th
e

in
te

gr
it

y
of

th
e

cl
ie

nt
en

vi
ro

nm
en

t
by

co
nf

in
in

g
th

e
us

e
of

re
so

ur
ce

s

It
s

co
m

pl
ex

it
y

lie
s

in
th

e
st

ro
ng

in
te

rd
ep

en
de

nc
e

of
it

s
th

re
e

ba
si

c
co

m
po

ne
nt

s

It
ne

ed
s

on
ly

kn
ow

le
dg

e
of

th
e

pr
op

er
pa

ck
ag

es
It

is
re

ad
y

fo
r

op
er

at
io

n
w

he
ne

ve
r

m
ob

ile
co

de
(J

av
a

ap
pl

et
)

ne
ed

s
to

be
ex

ec
ut

ed
on

a
cl

ie
nt

m
ac

hi
ne

C
od

e
si

gn
in

g
Id

ea
l

fo
r

m
ob

ile
co

de
si

nc
e

it
ca

n
pr

ot
ec

t
th

e
in

te
gr

it
y

of
th

e
cl

ie
nt

en
vi

ro
nm

en
t

by
pr

ov
id

in
g

pr
oo

f
of

or
ig

in
an

d
al

te
ra

ti
on

at
te

m
pt

A
si

gn
at

ur
e

th
at

ac
co

m
pa

ni
es

th
e

co
m

po
ne

nt
is

ne
ed

ed
It

ne
ed

s
on

ly
kn

ow
le

dg
e

of
th

e
pr

op
er

pa
ck

ag
es

Th
e

on
ly

th
in

g
ne

ed
ed

is
a

pr
op

er
to

ol
ki

t
fo

r
be

in
g

ab
le

to
si

gn
th

e
co

de
pr

od
uc

ed

S
m

ar
t

ca
rd

s
P

er
fe

ct
fo

r
au

th
en

ti
ca

ti
on

pr
ov

is
io

n
C

om
pl

ex
it

y
lie

s
in

th
e

fa
m

ili
ar

iz
at

io
n

w
it

h
th

e
ac

co
m

pa
ny

in
g

fe
at

ur
es

(r
ea

de
r,

us
e

of
a

P
IN

,
et

c.
)

Th
e

us
er

us
es

th
em

as
a

bl
ac

k
bo

x
an

d
th

e
pr

og
ra

m
m

er
cr

ea
te

s
th

e
pr

op
er

ap
pl

ic
at

io
n

In
or

de
r

to
op

er
at

e
a

pr
op

er
re

ad
er

ne
ed

s
to

be
us

ed
an

d
th

e
sm

ar
t

ca
rd

to
be

pr
og

ra
m

m
ed

TC
P

A
/

P
al

la
di

um
In

te
nd

ed
to

pr
ov

id
e

da
ta

se
cu

ri
ty

,
in

te
gr

it
y,

au
th

en
ti

ci
ty

,
an

d
pr

iv
ac

y
C

om
pl

ex
en

ou
gh

,
as

a
nu

m
be

r
of

co
-

op
er

at
in

g
so

ft
w

ar
e

an
d

ha
rd

w
ar

e
m

od
ul

es
co

m
pr

is
e

th
e

w
ho

le
ar

ch
it

ec
tu

re

P
ro

m
is

es
to

of
fe

r
tr

an
sp

ar
en

cy
to

th
e

en
d

us
er

R
eq

ui
re

s
ha

rd
w

ar
e

an
d

so
ft

w
ar

e
m

od
ifi

ca
ti

on
s

in
or

de
r

to
pr

ov
id

e
tr

us
t

fe
at

ur
es

[89]

Victoria Skoularidou and
Diomidis Spinellis
Security architectures for
network clients

Information Management &
Computer Security
11/2 [2003] 84-91

section we review and use them as a basis for

a comparative study.

First, we identify the protection these

mechanisms offer against specific security

threats (threat model). Generally, security

threats to computer systems fall into the

following broad classes (Gritzalis and

Spinellis, 1997; Meyer et al., 1995):

Leakage (disclosure). The acquisition of

information by unauthorized recipients

(loss of confidentiality or privacy).

Tampering (modification). The

unauthorized alteration of information

(loss of integrity).

Resource stealing. The unauthorized use of

system facilities.

Repudiation. Loss of attribution.

Table I summarizes the protection against

these security threats offered by the

described technologies. Malware and user

ignorance have been added, since they also

comprise serious threats to a computer

system:

Apart from the level of protection and the

security services that these mechanisms

provide, we also compare them against a

number of non-functional characteristics

(Sommerville, 2001), summarized in Table II:

Complexity. It is not enough to just allege

that a certain methodology provides

security. On the contrary, security

attributes need to be easily verified thus

should not be complex. Simplicity is a

fundamental hint of computer systems

design (Lampson, 1983).

Ease of use. This is another important

attribute, since usually system

administrators and users do not want to

use awkward systems.

Incorporation into existing applications.

How easily these mechanisms could be

ported into existing systems.

These technologies can be combined in order

to provide more fine-grained protection,

based on the security services offered in

different layers (at the operating system

level via the virtual machine and the

reference monitor, at the network level via

firewalls, at the application-level via the

Java Sandbox and code signing techniques,

etc.) (Saltzer, 1984). For example, in the case

of a Java Card application, the Java Sandbox

and/or the code signing mechanism need to

operate in order to prevent a malicious one

from being downloaded to a smart card.

Similarly, if a firewall lets applets to be

executed on the client’s machine, the Java

Sandbox and/or code signing features should

be also used to prevent a possible malicious

behavior.

Conclusions

Many different technologies can be used to

secure the operation of a network client.

Ongoing research in sandboxing applications

can be found in Prevelakis and Spinellis (2001)

and Fu et al. (2000) while NSA (2001)

investigates architectures for providing

operating system security mechanisms.

Firewall vendors should consider more the

ease of configuration while virtual machines

need to be enhanced in order to provide better

performance. Code signing is an improvement

in controlling software origin but the fact that

it is based on human judgment poses the need

to use it in combination with sandboxes. Smart

cards seem to be a very promising technology

for client protection. Protecting network

clients becomes imperative as users rely more

and more on them in order to conduct sensitive

operations (e.g. e-commerce transactions). We

believe that in the forthcoming years research

in this area will empower their security.

References
Anderson, J. (1972), `̀ Computer security

technology planning study’’, ESD-TR-73-51,

HQ Electronic Systems Division (AFSC), L.G.

Hanscom Field, Bedford, MA, October,

Vol. 1/2.

Anderson, R. (2002), `̀ TCPA/Palladium frequently

asked questions, Version 1.0’’, available at:

www.cl.cam.ac.uk/~rja14/tcpa-faq.html

(accessed 6 November 2002).

Arbaugh, B. (2002), `̀ Improving the TCPA

specification’’, IEEE Computer, Vol. 38 No. 5,

August, pp. 77-9.

Balfanz, D. and Felten, E. (1999), `̀ Hand-held

computers can be better smart cards’’,

Proceedings of the 8th USENIX Security

Symposium, Washington, DC.

Chen, Z. (1998), ``Understanding Java Card 2.0’’,

Javaworld Magazine, March.

Cheswick, W. and Bellovin, S. (1994), Building

Internet Firewalls, Addison-Wesley, Reading,

MA.

Coleman, A. (1998), `̀ Giving currency to the Java

Card API’’, Javaworld Magazine.

Erlingsson, U. and Schneider, F. (1999), `̀ SASI

enforcement of security policies: a

retrospective’’, ACM New Security Paradigms

Workshop, July, New York, NY, pp. 246-55.

Erlingsson, U. and Schneider, F. (2000), `̀ IRM

enforcement of Java stack inspection’’, 2000

IEEE Symposium on Security and Privacy

(SOSP ’2000), Piscataway, NJ.

Freudenthal, M., Heiberg, S. and Willemson, J.

(2000), `̀ Personal security environment on

palm PDA’’, 16th Annual Computer Security

Applications Conference (ACSAC ’00), New

Orleans, LA, 11-15 December.

Fu, K., Sit, E., Smith, K. and Feamster, N. (2000),

`̀ MAPbox: using parameterized behavior

classes to confine untrusted applications’’, 9th

[90]

Victoria Skoularidou and
Diomidis Spinellis
Security architectures for
network clients

Information Management &
Computer Security
11/2 [2003] 84-91

http://www.cl.cam.ac.uk/%7Erja14/tcpa-faq.html

USENIX UNIX Security Symposium, Denver,

CO.

Garfinkel, S. and Spafford, G. (2002), Web Security,

Privacy and Commerce, 2nd ed., O’Reilly &

Associates, Sebastopol, CA.

Ghosh, A. (1998), E-Commerce Security: Weak

Links, Best Defenses, Wiley Computer

Publishing, New York, NY.

Ghosh, A. (2001), Security and Privacy for

E-Business, Wiley Computer Publishing.

Ghosh, A. and McGraw, G. (1998), `̀ An approach

for certifying security in software

components’’, 21st National Information

Systems Security Conference, National

Institute of Standards and Technology (NIST),

Crystal City, VA, pp. 82-6.

Gong, L., Mueller, M., Prafullchandra, H. and

Schemers, R. (1997), ``Going beyond the

sandbox: an overview of the new security

achitecture in the Java development kit

(JDK) 1.2’’, USENIX Symposium on Internet

Technologies and Systems, Monterey, CA,

December, pp. 103-12.

Gritzalis, S. and Spinellis, D. (1997) `̀ Addressing

threats and security issues in World Wide

Web technology’’, 3rd International

Conference on Communications and

Multimedia Security, Athens,Greece, pp. 33-46.

Gritzalis, S., Aggelis, G. and Spinellis, D. (1998),

`̀ Programming languages for mobile code: a

problems viewpoint’’, 1st International

Network Conference INC ’98, Plymouth,

pp. 210-17.

Kozen, D. (1998), Efficient Code Certification, Tech.

Report 98-1661, Cornell University, January.

Lampson, B. (1971), `̀ Protection’’, 5th Princeton

Conference on Information Science and

Systems, Princeton, NJ.

Lampson, B. (1983), `̀ Hints for computer systems

design’’, 9th ACM Symposium on Operating

Systems Principles, Bretton Woods, NH.

Lindhorn, T. and Yellin, F. (1997), The Java

Virtual Machine Specification, Addison-

Wesley, Reading, MA.

Lobel, J. (1986), Computer Security and Access

Control: Foiling the System Breakers,

McGraw-Hill, New York, NY.

McGraw, G. and Felten, E. (1997), `̀ Understanding

the keys to Java Security’’, Javaworld

Magazine.

McGraw, G. and Felten, E. (2000), `̀ Securing

Java’’, Wiley Computer Publishing,

New York, NY.

Martin, D. Jr, Rajagopalan, S. and Rubin, A.

(1997), `̀ Blocking Java applets at the firewall’’,

1997 IEEE Symposium on Network and

Distributed Systems Security, San Diego, CA,

March, available at: www.cs.bu.edu/

techreports/96-026-java-firewalls.ps.Z

(accessed 6 November 2002).

Meyer, K., Schaeffer, S., Baker, D. and Manning,

S. (1995) `̀ Addressing threats in World Wide

Web technology’’, 11th Annual Computer

Security Applications Conference, pp. 123-3.

Microsoft Corporation (2001) `̀ Code signing with

Microsoft authenticode’’, MSDN Library

Online.

Microsoft Corporation (2002), Microsoft

`̀ Palladium’’: A Business Overview, White

Paper, August, available at: www.microsoft.

com/presspass/features/2002/jul02/

0724palladiumwp.asp (accessed

6 November 2002).

Necula, G. and Lee, P. (1996), `̀ Safe kernel

extensions without run-time checking’’, 2nd

USENIX Symposium on Operating Systems

Design and Implementation (OSDI ’96, Seattle,

Washington, DC, October.

NSA (2001), `̀ Security enhanced Linux

(SELinux)’’, available at: www.nsa.gov/

selinux/ (accessed 20 November 2001).

Organick, E. (1972), The MULTICS System: An

Examination of Its Structure, MIT Press,

Cambridge, MA.

Prevelakis, V. and Spinellis, D. (2001), USENIX

2001 Technical Conference, USENIX

Association.

Saltzer, J., Reed, D. and Clark, D. (1984), `̀ End-to-

end arguments in system design’’, ACM

Transactions on Computer Systems, Vol. 2

No. 4, pp. 277-88.

Schneier, B. (2002), `̀ Palladium and the TCPA’’,

Crypto-Gram Newsletter, 15 August,

Counterpane Internet Security, Inc., available

at: www.counterpane.com/crypto-gram-

0208.html (accessed 6 November 2002).

Schoen, S. (2002), `̀ Palladium details’’,

ActiveWin.com, July 8, available at:

www.activewin.com/articles/2002/pd.shtml

(accessed 6 November 2002).

Sommerville, I. (2001), Software Engineering, 6th

Edition, Addison-Wesley, Reading, MA.

Stallings, W. (1995), Network and Internetwork

Security: Principles and Practice,

Prentice-Hall, Englewood Cliffs, NJ.

Trusted Computing Platform Alliance (TCPA)

(2000), Building a Foundation of Trust in the

PC, White Paper, January.

Visa International (2001), `̀ Chip migration plan’’,

available at: www.visa.com (accessed 10

November 2001).

VMware Inc. (2000), `̀ VMware GSX server’’,

available at: www.vmware.com/pdf/

gsx_whitepaper.pdf (accessed 10 November

2001).

Wahbe, R., Lucco, S., Anderson, T. and Graham,

S. (1993), `̀ Efficient software-based fault

isolation’’, 14th ACM Symposium on

Operating Systems Principles (SOSP’ 93,

Asheville, NC, pp. 203-16.

Wallach, D. and Felten, E. (1998), `̀ Understanding

Java stack inspection’’, 1998 IEEE Symposium

on Security and Privacy (SOSP’ 98), Oakland,

CA, May.

Zwicky, E., Cooper, S. and Chapman, D. (2000),

Building Internet Firewalls, 2nd Edition,

O’Reilly & Associates, Sebastopol, CA.

Further reading
Gollman, D. (1999), Computer Security, Wiley

Computer Publishing, New York, NY.

[91]

Victoria Skoularidou and
Diomidis Spinellis
Security architectures for
network clients

Information Management &
Computer Security
11/2 [2003] 84-91

http://www.cs.bu.edu/techreports/96-026-java-firewalls.ps.Z
http://www.cs.bu.edu/techreports/96-026-java-firewalls.ps.Z
http://www.microsoft.com/presspass/features/2002/jul02/
http://www.microsoft.com/presspass/features/2002/jul02/
http://www.microsoft.com/presspass/features/2002/jul02/
http://www.nsa.gov/selinux/
http://www.nsa.gov/selinux/
http://www.counterpane.com/crypto-gram0208.html
http://www.counterpane.com/crypto-gram0208.html
http://www.activewin.com/articles/2002/pd.shtml
http://www.visa.com
http://www.vmware.com/pdf/gsx_whitepaper.pdf
http://www.vmware.com/pdf/gsx_whitepaper.pdf

