
112 June 2003/Vol. 46, No. 6 COMMUNICATIONS OF THE ACM

Security is often described as a weak-link phe-
nomenon. Ken Thompson in his 1983 Turing
Award Lecture [3] described how a compiler

could be modified to plant a Trojan horse into the
system’s login authentication program so that it
would accept a known password. In addition, the C
compiler could be altered to propagate this change
when it was recompiled from its (unmodified)
source code. The system Thompson described was
seriously compromised and could never be trusted:
even a recompilation from clean source code would
yield a Trojaned compiler and login program.

Twenty years later we find efforts such as the Trusted
Computing Group (the retooled Trusted Computing
Platform Alliance, a 190-company industry work
group), Intel’s LaGrande, and Microsoft’s NGSCB
(Next Generation Secure Computing Base, previously
known as Palladium) aiming to create secure systems
from the ground up [4]. “Trusted Computing” (TC)
platforms include specialized hardware or a processor
that can monitor a system’s boot process to ensure the
computer is based on appropriately certified hardware
and software. After verifying the machine’s hardware
state and firmware, the platform can check that the
operating system is certified, then load it and transfer
control to it. The operating system (for example
Microsoft’s NGSCB) can similarly verify that only
secure untampered applications are loaded and exe-
cuted—no more doctored C compilers or unautho-
rized descramblers. Thus, a TC platform can be used
to rigorously enforce third-party-mandated security
policies such as those needed for digital rights manage-
ment (DRM) and mandatory access control [1].

Given our nearly unbroken track record of failed
security technologies, we should view claims regarding
a system’s trustworthiness with skepticism. Recently a
group managed to run Linux on a Microsoft Xbox—
without any hardware modifications [2]. The Xbox, in
common with many other game consoles, mobile
phones, and even printer cartridges, can be considered
an instance of a special-purpose TC platform.
Although based on commodity hardware, the Xbox is
designed in a way that allows only certified applications
(games) to run, thus protecting the licensing revenue
stream of its vendor. Earlier attempts to run unautho-
rized software (such as the Linux kernel) on it required
hardware modifications, a prospect that will not be

realistic once TC features are part of the CPU (as
might be the case with Intel’s LaGrande design). The
recent attack modifies the saved data of a particular
game in a way that renders the trusted game into an
untrusted agent that can then be used to boot Linux.

The two attacks, set apart by 20 years, share an
interesting parallel structure. Thompson showed us
that one cannot trust an application’s security policy by
examining its source code if the platform’s compiler
(and presumably also its execution environment) were
not trusted. The recent Xbox attack demonstrated that
one cannot trust a platform’s security policy if the appli-
cations running on it cannot be trusted. The moral of
the Xbox attack is that implementing on a TC plat-
form a robust DRM, or mandatory access control, or
even a more sinister security policy involving outright
censorship will not be easy. It is not enough to certify
the hardware and have a secure operating system; even
a single carelessly written but certified application can
be enough to undermine a system’s security policy. As
an example, a media player could be tricked into saving
encrypted content in an unprotected format by exploit-
ing a buffer overflow in its (unrelated) GUI customiza-
tion (so-called skin) code. Capability machines built in
the 1970s used strong typing and a finer granularity
object classification and access control schema that
would prevent such an attack. However, as Needham
and Wilkes concluded from their work on the CAP
system, the resultant operating system was too complex
and therefore hard to trust and maintain [5]. Those of
us who distrust the centralized control over our data
and programs that TC platforms and operating systems
may enforce can rest assured that the war for total con-
trol of computing devices cannot be won.

References
1. Anderson, R. Cryptography and competition policy—Issues with

trusted computing. In Proceedings of the Workshop on Economics and
Information Security (2003); www.cl.cam.ac.uk/ftp/users/rja14/tcpa.pdf 

2. Malda, R. Linux running on Xbox without Modchip!;
slashdot.org/article.pl?sid=03/03/30/1337234 

3. Thompson, K.L. Reflections on trusting trust. Commun. ACM 27, 8
(Aug. 1984), 761–763. 

4. Vaughan-Nichols, S.J. How trustworthy is trusted computing? Com-
puter 36, 3 (Mar. 2003), 18–20.

5. Wilkes, M.V. and Needham, R.M. The Cambridge CAP Computer and
its Operating System. Elsevier, London, 1978.

Diomidis Spinellis (dds@aueb.gr) is an assistant professor at the
Athens University of Economics and Business and author of Code Reading
(Addison-Wesley, 2003).

c

Reflections on Trusting Trust Revisited

PA
U

L
W

A
TS

O
N

Inside Risks Diomidis Spinellis


