
IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 49, NO. 1, JANUARY 2003 (DRAFT) 280

Reliable Identification of Bounded-length Viruses
is NP-complete

Diomidis Spinellis, Member, IEEE

Abstract—A virus is a program that replicates itself by copying
its code into other files. A common virus protection mechanism in-
volves scanning files to detect code patterns of known viruses. We
prove that the problem of reliably identifying a bounded-length
mutating virus is NP-complete by showing that a virus detector for
a certain virus strain can be used to solve the satisfiability prob-
lem. The implication of this result is that virus identification meth-
ods will be facing increasing strain as virus mutation and hosting
strategies mature, and that different protection methods should be
developed and employed.1 2

Index Terms—buffer-overflow, complexity, detection, identifica-
tion, mutation, NP-complete, security, virus

I. INTRODUCTION

ONE often-used defence against computer viruses is the ex-
ecution of an anti-virus program that detects and cleans

programs that appear to be infected. Virus writers respond to
this defence by trying to thwart anti-virus software through
targeted attacks, mutations, or social engineering. Mutating
viruses are a particularly insidious threat, because detection al-
gorithms need to be constantly updated and to spend increasing
processing time to identify new mutation types. The question
of whether complexity theory is on the side of virus writers
or the protection vendors could have important practical impli-
cations. In this paper we will prove that there exist realistic
viruses whose reliable detection is of NP-complete complexity
[1] and that therefore the general problem of reliable bounded-
length virus identification is NP-complete.

II. VIRAL SOFTWARE

Intentionally created malicious software [2]—often termed
malware—is typically classified into Trojan horses, viruses,
and worms [3]. A Trojan horse is a program that exploits the
rights of its user to perform an action its user does not intend, a
virus is a Trojan horse that replicates itself by copying its code
into other program files [4], while a worm is an independently-
running program that replicates through a network exploiting
security weaknesses to invade other computers.

D. Spinellis is an Assistant Professor in the Department of Management Sci-
ence and Technology at the Athens University of Economics and Business,
Athens, Greece. E-mail: dds@aueb.gr .
�IEEE Transactions on Information Theory, 49(1):280–284, January 2003.
�This is a machine-readable rendering of a working paper draft that led to

a publication. The publication should always be cited in preference to this
draft using the reference in the previous footnote. This material is presented to
ensure timely dissemination of scholarly and technical work. Copyright and all
rights therein are retained by authors or by other copyright holders. All persons
copying this information are expected to adhere to the terms and constraints
invoked by each author’s copyright. In most cases, these works may not be
reposted without the explicit permission of the copyright holder.

A number of virus prevention and detection methods have
been proposed and are commonly implemented [5], [6]. Ref-
erence [7] contains an annotated bibliography of malware anal-
ysis and detection papers. Prevention methods involve limit-
ing the flow of information between programs through the use
of appropriate hardware and software protection domains, cou-
pled with self-defence mechanisms, instrumentation, and fault-
tolerance. Since the above methods will typically interfere with
many legitimate operations (such as the installation of new soft-
ware or the correction of an existing version) they need to be
coordinated through carefully designed and executed security
procedures. Unfortunately current practice in system adminis-
tration often renders these methods useless. A large percent-
age of users typically administer their personal workstations on
their own, in most cases exercising the full rights of the system
administrator, without sufficient training and diligence.

Therefore, as a secondary line of defence, detection mea-
sures are often employed to locate virus instances and infec-
tions. Two often used detection measures involve either the
comparison of the system’s programs against known-good ver-
sions (typically condensed in the form of a checksum or a cryp-
tographically secure signature [8]) or the comparison of files
against patterns of known viruses. Since the first method de-
pends on a known-clean system and can not be used to check
software of unknown origin, the second, scanning, method is
the one most commonly employed. A number of software ven-
dors provide virus-scanning software that can search new and
existing system files for patterns of all known viruses. The ven-
dors regularly distribute updated versions of the virus patterns
to keep the virus detection process up-to-date.

Virus writers however, have developed a series of counter-
measures. Even early academic examples of viral code were
cleverly engineered to hinder the detection of the virus [9].
Since the actual task of writing a virus is relatively simple [10],
[11] modern virus code focuses on employing platform inde-
pendence, stealth, effective replication, and detection counter-
measures. Three pattern-matching detection countermeasures
typically employed are the encryption of the virus body with
a variable cryptographic key, the polymorphic generation of
the decryption routine using equivalent code instructions, and,
more recently, the metamorphic generation of the whole virus
body through the addition, removal, permutation, and substitu-
tion of code sequences. Viruses that employ these techniques,
such as W32/Simile [12] can be very difficult to identify. In the
following section we establish that reliably detecting instances
of such viruses is a problem of NP-complete complexity.

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 49, NO. 1, JANUARY 2003 (DRAFT) 281

III. IDENTIFICATION COMPLEXITY

A virus is formally defined [13] by reference to a Turing Ma-
chine [14]

� � � �� � �� � �� � �� � �� � �� �
�� � �� � �� � �� � �� � �� � �� � ��

(1)
with a given set of states �� , set of input symbols �� , and
maps ��� � �� � �� � that, based on its current state 	 � ��
and input symbol
 � �� coming from a semi-infinite tape,
determine: the output symbol � � �� to write on the tape,
the machine’s next state 	� � �� , and the tape’s motion � �
���� �� ��.

Given the machine � , a sequence of tape symbols � � � � �
�� can be considered as a virus for that machine iff, processing
the sequence � at time (sequence point) implies that at a future
time point � a sequence ��—not overlapping with �—will exist
on the tape, and that the sequence � � will have been written by
� at a point �� lying between and �:

��� � �� �
�� �� � ���

�
�� �� � � �
��� �� �� � � ��� �� � � 	�	 � ��� � �

��� ��� �� ��� �
 � �� � � �
��� � � � �� � 	��	� � �� � � � � � 	�	� � �
��� ��� ��� � � ��� ��� �� � 	��	 � ��� � �� �
�� ���� � ��� � � � �� � 	��	 � ��

(2)

where
� � � stands for the number of times the machine has

performed its basic operation—“move”
� �� �� � � represents the machine’s tape cell position

number at time
� ���

is the machine’s initial state
� �� �� �� � �� represents the content of cell � at time
Note that in the original seminal reference [13] the above

virus definition appears in the context of a viral set � � �
���� �: a tuple consisting of a Turing Machine � and a set
of symbol sequences � � �� � � � � . From the virus definition
it is clear that the notion of a virus is intimately associated with
its interpretation in a given context—environment. It has been
shown [13] that “any self-replicating tape symbol sequence is
a one element � �, that there are countably infinite � �s and
non � �s, that machines exist for which all tape sequences are
viruses and for which no tape sequences are viruses, and that
any finite sequence of tape symbols is a virus with respect to
some machine.” The same reference also proves that in the gen-
eral case determining whether a given tuple ����� � � � � ��
is viral is an undecidable problem (i.e. that there is no algo-
rithm that can reliably detect all viruses) through a reasoning
similar to that employed to prove the undecidability of the Halt-
ing Problem [14]. Other researchers have shown that there are
also virus types (viruses that evolve to contain an instance of
the virus detection program) that can not be detected by any
error-free algorithm [15].

As is often the case, current practice differs from theory. Typ-
ical pattern based virus detection software scans a (relatively)
known environment (processor architecture and operating sys-
tem) to locate one of several (thousands in practice) a-priori
known viruses. In the following paragraphs we will therefore
establish the complexity of the more restricted problem of lo-
cating an instance of a known finite length virus in a given ex-
ecution environment. For instance, the virus programs we pro-
vide in the appendices are only viral in the context of compi-
lation and execution following the rules of Haskell and ANSI

C/POSIX, respectively.
The complexity of detecting a known fixed virus pattern of

length � in a program of length � is harnessed by the Boyer-
Moore string-searching algorithm [16] which never uses more
than � � � steps and under many circumstances (a small
pattern and a large alphabet) can use about ��� steps. Un-
fortunately, as we saw in the previous section, virus writers
are seldom thus accommodating; fixed search patterns are not
any more a viable virus detection method. We will prove that
the problem of reliably identifying a bounded-length mutating
virus is NP-complete. Our proof is based on showing that a
virus detector� for a certain virus strain � can be used to solve
the satisfiability problem, which is known to be NP-complete
[17]. (This approach works in the same way for any similar
NP-complete problem; the satisfiability of the problem we are
examining is not a special case.)

The virus � is a mutating self-replicating program. We as-
sume that the virus detector � can reliably determine in P-time
whether a given candidate program� is a mutation of the virus
� . We will use the virus detector as an oracle for determining
the satisfiability of an � -term boolean formula � of the follow-
ing type:

� � ������ � ����� � ������ � � � �� �
������� � ����� � ������ � � � �� �
������ � � �� �
...

(3)

� � ���� � � (4)

and thereby show that a P-time reliable virus detector is equiv-
alent to a P-time solution to the satisfiability problem.

We will use the satisfiability formula � to create a virus
archetype � and a possible instance of a virus phenotype � .
The virus is a triple

��� 	� �� (5)

where
� � is the virus processing and replication function
� 	 is a boolean value indicating whether an instance of the

virus has found a solution to �
� � is an integer encoding the candidate values for �
The function � maps a triple ��� 	� �� into a new triple

��� 	�� ��� and is defined as follows:

���� 	� ������ 	 � �� �	� �
� ��� � �� �� �� (6)

Each � term �� is calculated from � through the expression
� �

�

�
���
 � � (7)

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 49, NO. 1, JANUARY 2003 (DRAFT) 282

A new generation of the virus is generated by applying � to the
current generation.

Expressed in words, each new virus generation
1) evaluates � by extracting successive boolean value com-

binations from �
2) increments � until it reaches
�

3) passes the result of the � evaluation to the next generation
We can now ask � whether the virus archetype �

�������� �� (8)

will ever result in a virus mutation phenotype �

�������
�� (9)

that is whether one of the virus mutations will satisfy �.
We have thus proven that a reliable virus detector � operat-

ing in P-time can be used as a P-time satisfiability oracle and
that therefore reliable virus detection is NP-complete.

As an example for the operation of the virus consider the
satisfiability of the formula �

��� � ��� � ��� (10)

The virus replication function �—after omitting for simplicity
of expression the conditional, which only serves to limit the
number of virus mutations—will be:

���� 	� ������ 	 � ��� � ��� � ���� �� �� (11)

the corresponding archetype �:

����� 	� ������ 	 � ��� � ��� � ���� �� ����� �� (12)

and the phenotype � indicating satisfiability:

����� 	� ������ 	 � ��� � ��� � ���� �� ����� �� (13)

This particular virus will generate a mutation �—and thereby
indicate that � is satisfiable—in four generations through the
following sequence:

����� �
������� 	� ������ 	 � ��� � ��� � ���� �� ��

����� 	� ������ 	 � �� �� ����� ��
�
�

�������� 	� ������ 	 � �� �� ���� � �� � �� � ��� � � ��
Æ
�

�������� 	� ������ 	 � �� �� ����� �� �
������ 	� ������ 	 � ��� � ��� � ���� �� ��

����� 	� ������ 	 � �� �� ����� ��
�
�

������� 	� ������ 	 � �� �� ���� � �� � �� � ��� � � ��
Æ
�

������� 	� ������ 	 � �� �� �����
� �
����� 	� ������ 	 � ��� � ��� � ���� �� ��

����� 	� ������ 	 � �� �� �����
�
�
�

������ 	� ������ 	 � �� �� ���� � �� � �� � ���
 � ��
Æ
�

������ 	� ������ 	 � �� �� ����� �� �
���� 	� ������ 	 � ��� � ��� � ���� �� ��

����� 	� ������ 	 � �� �� ����� ��
�
�

����� 	� ������ 	 � �� �� ���� � �� ��� � ��� � � ��
Æ
�

����� 	� ������ 	 � �� �� ����� �� � �
(14)

IV. IMPLICATIONS

The creation of metamorphic viruses is a relatively recent
phenomenon that places a considerable threat on our informa-
tion system infrastructures. From a theoretical point of view,
the viruses bear remarkable similarities to the virus we have ex-
amined and the examples depicted in this paper’s appendices.
Virus detection programs however need not be 100% correct.
Users can tolerate the (typically remote) possibility of some
“noise” (false positives), because in practice it is quite rare for
a non-viral program to match the detection pattern of a known
virus. As an example, a virus detector that detected this pa-
per’s viruses and also detected as a virus all triplets of the form
��� 	� �� � �	 �� (even cases where � is a non-satisfiable for-
mula and 	 is true) would probably be tolerated as a function-
ing “good-enough” virus detector, although strictly speaking it
detects some false positives. Such a virus detector can be im-
plemented to terminate in linear time and is not NP-complete.

Thus, given the difference between the theoretically perfect
detection (which is in the general case undecidable, and for
known viruses, as we demonstrated, NP-complete) and the prac-
tically sufficient identification (which is the basis for a num-
ber of working virus scanner implementations) two questions
arise.

1) How can the notion of “sufficiently good detection” be
formalized in information theory terms?

2) Can the increasing ability of metamorphic viruses to mu-
tate move the identification threshold currently used by
virus detection programs to the point where either nu-
merous legitimate data sequences are falsely detected as
viruses, or real viruses fail to be detected?

An interesting phenomenon affecting the above topics con-
cerns the currently permeable boundary between code and data.
Buffer overflow attacks [18] are based on data that overwrites a
carelessly written program’s return stack address lying at the
end of a data buffer to cause the program to execute part of
that data. This renders all data files (documents, images, music,
video—many of them highly compressed) stored on a computer
potential carriers of viral code and dramatically increases the
data a virus detector has to scan and discriminate. Few viruses
currently propagate through buffer overflows; these weaknesses
have traditionally been mainly exploited by worms and Trojan
horses [19]. However, once such viruses are released, the cur-
rent virus detection approach will come under increasing strain,
faced with the short pattern vectors of mutating viruses and or-
ders of magnitude more data to scan; as an example a 18GB
disk filled with MP3 files is likely to contain any 4-byte (virus)
pattern. In the medium and long term, hardening our security
defences and developing software, procedures, and work prac-
tices that will stem the spread of malware seem to be the only
reasonable alternatives.

APPENDIX I
VIRUS CODE IN HASKELL

The following code defines the virus replication function and
the respective archetype and candidate phenotype, for deter-
mining the satisfiability of the expression

��� � �� � ���� � ���� � ��� � ���� (15)

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 49, NO. 1, JANUARY 2003 (DRAFT) 283

The satisfiability function candidate values are encoded using
Haskell’s arbitrary precision integers.

module Virus where
replicate :: (replicate, Bool, Integer)->
(replicate, Bool, Integer)

replicate (v, b, i) = (v, b ||
(((bit 0 i) || (bit 3 i) ||

not (bit 4 i)) &&
(not (bit 1 i) || (bit 5 i)) &&
((bit 2 i)))

, if i == 64 then i else i + 1)

-- Extract bit b out of the Integer n
bit :: Integer -> Integer -> Bool
bit b n = n ‘div‘ (2 ˆ b) ‘rem‘ 2 == 1

virus_archetype = (replicate, False, 0)
virus_phenotype = (replicate, True, 64)

APPENDIX II
VIRUS CODE IN C

The following code is the virus archetype, again for deter-
mining the satisfiability of the expression (15). The satisfia-
bility function candidate values are encoded as elements of the
array x.

#include <stdio.h>
#include <ctype.h>

/* Number of variables to satisfy */
#define N 6
int x[N] = {
0, 0, 0, 0, 0, 0,
};
void
advance(void)
{

int i, j;
for (i = 0; i < N; i++)
if (x[i] == 0) {

for (j = 0; j < i; j++)
x[j] = 0;

x[i] = 1;
return;

}
}
void
print_vector(FILE *f)
{

int i;
for (i = 0; i < N; i++)
fprintf(f, "%c, ", x[i] ? ’1’ : ’0’);

fputc(’\n’, f);
}
main()
{

char buff[1024];
FILE *fi = fopen(__FILE__, "r");

FILE *fo = fopen("new" __FILE__, "w");

if ((x[0] || x[3] || !x[4]) &&
(!x[1] || x[5]) && (x[2]))

fprintf(fo, "/* Satisfied */\n");
advance();
while (fgets(buff, sizeof(buff), fi))

if (isdigit(buff[0]))
print_vector(fo);

else
fputs(buff, fo);

fclose(fi); fclose(fo);
system("cc new" __FILE__);
return 0;

}

The candidate virus phenotype begins as follows:

/* Satisfied */
[...]
int x[N] = {
1, 1, 1, 1, 1, 1,
};

ACKNOWLEDGMENTS

The author acknowledges the valuable suggestions of the
anonymous referees on an earlier version of this paper. The
publication of this work was supported by the IST project
mEXPRESS (IST-2001-33432), which is funded in part by the
European Commission.

REFERENCES

[1] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide
to the Theory of NP-Completeness, W. H. Freeman and Company, 1979.

[2] Carl E. Landwehr, Alan R. Bull, John P. McDermott, and William S. Choi,
“A taxonomy of computer program security flaws,” ACM Computing Sur-
veys, vol. 26, no. 3, pp. 211–254, Sept. 1994.

[3] Peter J. Denning, “Computer viruses,” American Scientist, pp. 236–238,
May-June 1988.

[4] Fred Cohen, “Computer viruses: Theory and experiments,” Computers
& Security, vol. 6, no. 1, pp. 22–35, Feb. 1987.

[5] Eugene H. Spafford, Kathleen A. Heaphy, and David J. Ferbrache, “A
computer virus primer,” in Computers Under Attack: Intruders, Worms,
and Viruses, Peter J. Denning, Ed., chapter 20, pp. 316–355. Addison-
Wesley, 1990.

[6] Vassilis Prevelakis and Diomidis Spinellis, “Sandboxing applications,”
in USENIX 2001 Technical Conference Proceedings: FreeNIX Track.
Usenix Association, June 2001.

[7] Prabhat K. Singh and Arun Lakhotia, “Analysis and detection of computer
viruses and worms: An annotated bibliography,” ACM SIGPLAN Notices,
vol. 37, no. 2, pp. 29–35, Feb. 2002.

[8] R. Rivest, “RFC 1321: The MD5 message-digest algorithm,” Apr. 1992,
Status: INFORMATIONAL.

[9] Ken L. Thompson, “Reflections on trusting trust,” Communications of
the ACM, vol. 27, no. 8, pp. 761–763, Aug. 1984.

[10] Tom Duff, “Experience with viruses on UNIX systems,” Computing
Systems, vol. 2, no. 2, pp. 155–171, Spring 1989.

[11] M. Douglas McIlroy, “Virology 101,” Computing Systems, vol. 2, no. 2,
pp. 173–184, Spring 1989.

[12] Frédéric Perriot, Peter Ferrie, and Péter Ször, “W32/Simile,” On-
line http://www.virusbtn.com/resources/viruses/indepth/simile.xml. Cur-
rent June 2002, 2002.

[13] Fred Cohen, “Computational aspects of computer viruses,” Computers &
Security, vol. 8, no. 4, pp. 325–344, June 1989.

[14] Alan M. Turing, “On computable numbers, with an application to the
Entscheidungs Problem,” Proceedings of the London Mathematical Soci-
ety, vol. 2, no. 42, pp. 230–265, 1936, Corrections in 2(43):544–546.

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 49, NO. 1, JANUARY 2003 (DRAFT) 284

[15] David M. Chess and Steve R. White, “An undetectable com-
puter virus,” in Virus Bulletin Conference, Sept. 2000, Online
http://www.research.ibm.com/antivirus/SciPapers/VB2000DC.pdf. Cur-
rent June 2002.

[16] R. S. Boyer and J. S. Moore, “A fast string searching algorithm,” Com-
munications of the ACM, vol. 20, no. 10, pp. 262–272, Oct. 1977.

[17] S. A. Cook, “The complexity of theorem prooving procedures,” in Pro-
ceeding of the 3rd ACM Symposium on Theory of Computing. 1971, pp.
151–158, ACM.

[18] Crispan Cowan, Perry Wagle, Calton Pu, Steve Beattie, and Jonathan
Walpole, “Buffer overflows: Attacks and defenses for the vulnerability
of the decade,” in Proceedings of the DARPA Information Survivability
Conference and Exposition, Hilton Head, SC, USA, Jan. 2000, DARPA,
pp. 119–129.

[19] Mark W. Eichlin and Jon A. Rochlis, “With microscope and tweezers: An
analysis of the internet virus of November 1988,” in IEEE Symposium on
Research in Security and Privacy, Oakland, CA, May 1989, pp. 326–345.

PLACE
PHOTO
HERE

Diomidis Spinellis holds an MEng in Software En-
gineering and a PhD in Computer Science both from
Imperial College (University of London, UK). Cur-
rently he is an Assistant Professor at the Depart-
ment of Management Science and Technology at
the Athens University of Economics and Business,
Greece. He is the author of the book “Code Read-
ing: The Open Source Perspective” (Addison Wes-
ley, 2003) and more than 60 journal papers and con-
ference presentations. He has contributed software to
the BSD Unix distribution, the X-Windows system,

and is the author of a number of open-source software packages, libraries, and
tools. His research interests include Information Security, Software Engineer-
ing, and Ubiquitous Computing.

Dr. Spinellis is a member of the ACM, the IEEE Computer Society, the
Greek Computer Society, the Technical Chamber of Greece, and a founding
member of the Greek Internet User’s Society. He is a co-recipient of the Usenix
Association 1993 Lifetime Achievement Award.

