
Panoptis: Intrusion Detection using a Domain-specific
Language��

Diomidis Spinellis� and Dimitris Gritzalis�

June 19, 2002

Abstract

We describe the use of a domain-specific language (DSL) for expressing critical design values and
constraints in an intrusion detection application. Through the use of this specialised language, information
that is critical to the correct operation of the software can be expressed in a form that can be easily
drafted, verified, and maintained by domain experts (security officers), thus minimising the risk inherent
from the mediation of software engineers. Our application, Panoptis, is a DSL-based low-cost, easy-
to-use intrusion detection system using the process accounting records kept by most Unix systems. A
set of database tables contain resource usage profiles for processes, terminals, users, and time intervals.
Panoptismonitors new process data against the recorded profiles and reports on entities diverging from
the established resource usage envelopes implying possible data security threats. We demonstrate the
operation of Panoptisby a case study of a real attack and subsequent system compromise that occured on
a system under our administrative control.

Keywords

Domain-specific languages, security monitoring, intrusion detection, Unix process accounting.

1 Introduction

Panoptis1 is an anomaly detection system based on the process-accounting records produced by all widely-
used versions of Unix. These records, originally intended for producing billing information, can be used
to detect anomalous situations and alert the security administrators. The voluminous nature of the process
accounting records prohibits manual inspection; Panoptiskeeps detailed database tables keyed by users,
terminals, processes, and time intervals containing typical usage profiles. A novel aspect of Panoptisis
the use of a domain-specific language (DSL) for the specification of the items that will be checked. Many
intrusion detection systems rely on a specification language for the detection, corelation, or reporting of
incidents (see section 7). The unique aspect of Panoptisis the narrow domain it covers; in the intrusion
detection paradigm that we advocate, a number of small focused systems like Panoptis, each with its own
domain-specific language, are combined to form an intrusion detection confederation.

Panoptisdetects and reports all entities that execute outside the defined profile envelopes and automati-
cally updates the database tables to reduce the administrative burden and reporting volume. On a system that
has an established pattern of use entities outside the normal usage, envelopes are likely to be associated with
information security breaches. Data threats that can be detected in this way include wiretapping, browsing,

�Journal of Computer Security, 10:159–176, 2002.
�This is a machine-readable rendering of a working paper draft that led to a publication. The publication should always be cited

in preference to this draft using the reference in the previous footnote. This material is presented to ensure timely dissemination of
scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons
copying this information are expected to adhere to the terms and constraints invoked by each author’s copyright. In most cases, these
works may not be reposted without the explicit permission of the copyright holder.

�Athens University of Economics and Business, Department of Management Science and Technology, Athens, Greece.
dds@aueb.gr

�Athens University of Economics and Business, Department of Informatics, Athens, Greece. dgrit@aueb.gr
1Argos-Panoptis — the one who can see everything — is a Greek mythology canine creature whose body is covered with eyes.

Even when Panoptis is sleeping half of its eyes remain open. For this it was given the task of guarding Io, one of Zeus’ lovers.

1

leakage, tampering, and masquerading [7]. An example of Panoptis’s output can be seen in Figure 5 (page
14).

The heuristic and quantitative nature of our approach extends the range of data security threats that can
be detected beyond the closed computer system environment into the organisational environment that hosts
Panoptis. As an example, Panoptiscould detect an employee transferring inordinately large amounts of data
to a computer outside the organisation even if that employee had proper system authorisations to perform
such transfers. Although Panoptiswas implemented under the Unix operating system, the approach and
techniques we used are applicable to other operating systems keeping process accounting records. As an
example, the Windows NT audit event log can be used in a similar way.

1.1 Domain-specific Languages

A domain-specific language [25] is a programming language tailored specifically for an application domain:
rather than being general purpose, it captures precisely the domain’s semantics. Examples of DSLs include
lexand yacc[13], used for program lexical analysis and parsing, HTML [6], used for document mark-up, and
VHDL, used for electronic hardware descriptions. Domain-specific languages allow the concise description
of an application’s logic reducing the semantic distance between the problem and the program [5, 29].

DSLs are, by definition, special purpose languages. Any system architecture encompassing one or more
DSLs is typically structured as a confederation of modules; some are implemented in one of the DSLs and the
rest are implemented using a general purpose programming language. As a design choice for implementing
security software, DSLs present two distinct advantages over a “hard-coded” program logic.

Concrete Expression of Security Policies

Security policies are not coded into the system or stored in an arcane file format; they are captured in a
concrete human-readable form. Policies expressed in the DSL can be scrutinised, split, combined, shared,
published, put under release control, printed, commented, and even automatically generated by other appli-
cations.

Direct Involvement of the Security Officer

The DSL expression style can often be designed so as to match the format typically used by the security
officer. This results in keeping the experts in a very tight software lifecycle loop where they can directly
specify, implement, verify, and validate, without the need of coding intermediaries. Even if the DSL is not
high-level enough to be used as a specification language by the security officer, it may still be possible to
involve the security officer in code walkthroughts far more productive than those involving code expressed
in a general purpose language.

1.2 Unix Process Accounting Records

Most modern versions of Unix provide the capability of process accounting[18, pp. 62–63]. The operating
system kernel creates a file containing an accounting record for every process that terminates. Each record
contains for a given process the following vector:

� ��, ��: its user and group identification,

� �� : its controlling terminal,

� ��: the time the process began,

� ��, ��, ��: the real, system and user times used by the process,

� ��: its total memory usage,

� ��, ��: its total character and disk input/output,

� � : the name of the command that started the process, and

� �, 	 : its exit status and associated flags.

2

Based on the above data the following quantities can be derived for every terminated process:

� ��: the local time of the day the process started found by converting the time the process began to
local time,

� ��: the total CPU time consumed by the process as the sum of the system and user times (� � � ��),

� �	: average memory usage as the memory accounted divided by the CPU time (� �
��),

� �	, �	: average character and disk input/output as the respective quantity divided by the CPU time
(��
��, ��
��),

� � : CPU “hog” factor as the process’s CPU time divided by the actual time it executed (� �
��), and

� the number of times the process ran in a specific time interval.

A number of programs are typically provided for processing the accounting records, but these are geared
towards providing billing and system performance tuning information. In the following sections, we will
describe how a domain-specific language can be used to specify the way parts of the process-accounting
data space can be grouped and checked for intrusion detection purposes.

2 Anomaly Detection Data Space

Panoptismonitors the system processes in three independent dimensions:

1. The accounting data This data corresponds to a specific process, terminal, and user and consists of
the values described in the previous section. It can be monitored for being above or below specific
limits which are based on the system’s historical data collected by Panoptis.

2. The monitored entity A monitored entity can be one of the following:

� � : a user,

� � : a terminal,

� � : a process,

� �� � �: a process executed by a specific user, and

� �� � �: a user working on a specific terminal.

An abnormal behaviour which could signify a security breach can be associated with any of the above
entities. For example,

� a user may run programs at an unusual time (�� � ����� � ��),

� a process may consume an inordinate amount of CPU time (� ��� � � �),

� a terminal may be exhibit abnormal input/output behaviour (e.g. � ��� � � �),

� a user may execute an uncommon command, or

� a user may work from an unusual terminal.

3. The monitoring time interval Time intervals are defined by the system administrator. Typical inter-
vals that provide useful data are:

A fixed period We found (see Section 6 for details) that storing data for twenty minute intervals,
a day, and a week captures enough information about the system behaviour to cover a large
number of possible security breach attempts. The twenty minute interval is useful for quickly
detecting a large number of invocations of an important program such as the password changing
command, while the day and week database tables can be run with a larger set of checks to detect
finer changes in the system’s behaviour indicating attempted security breaches.

3

A specific period Panoptiscan store separate data for every day and hour (e.g. Mon, Tue, ... and
1200h, 1300h, ...) to capture behaviour that is occurring in non-standard days or times. An
example of a security breach that can be detected using this method is the execution of an
application used by personnel working nine to five, late at night, or over the weekend. We
found it more convenient to group the specific period time interval tables into groups of larger
granularity such as workdays/weekend.

Continuous monitoring Finally, Panoptiscan be run in a mode whereby the accounting log is con-
tinuously monitored and all records that are appended to it are checked against the specified
tables. This execution mode provides immediate notification of possible security problems. A
system administrator can run Panoptisin this mode with its output redirected to a hardcopy
terminal to create a log that can not be erased even when the security of the system is compro-
mised.

The three dimensions described above can be tailored via a configuration file to a setup that is suitable
for the system being monitored. In addition, terminal and user names can be grouped in logical sets to
avoid the generation of redundant messages. As an example, all users of the same application or toolset
can be defined as one group, because we expect them to have similar usage profiles. One profile will be
defined and used for all of them, but any leap outside the profile will be directly attributable to a specific
user. Similarly, a pool of terminals that are interchangeably used in a room should be grouped together,
because they too will have statistically similar usage profiles.

3 The Panoptis Domain-specific Language

Panoptisconsists of a single program that reads accounting records and updates profile tables, optionally
reporting cases that fall outside the existing profiles. Its arguments are a DSL-based configuration file that
directs the program operation, the database to update, the interval to operate upon, and an optional list of
process accounting files (the system accounting file /var/adm/pacct is the default record source).

Panoptisis configured by a domain-specific language. The language supports bindings over the follow-
ing distinct database tables:

tty Terminals.

uid Users.

uidtty Users logged in on a specific terminal.

comm Commands.

uidcomm Users executing a specific command.

The basename used for storing each one of the above tables is specified as a parameter in the Panoptis
invocation. As a result, different tables can be used to store process accounting history for different hosts,
time intervals, or monitoring configurations.

For every process accounting record the following attributes can be checked:

maxaxsig Signal exit status.

maxhog Maximum CPU hog factor (CPU time over elapsed time).

maxmem Maximum memory usage.

maxavrw Maximum average disk block input/output.

maxstime Maximum system time.

minbmin Minimum daily start time (start time whithin the 24 hour interval).

maxutime Maximum user time.

maxbmin Maximum daily start time.

4

#
Configuration file for host pooh
#
$ Id: poo.dsl 1.6 2000/05/30 12:26:58 dds Exp $
#

HZ = 100 # "Floating point" value divisor
bigend = FALSE # Set to TRUE for big endian (e.g. Sun), FALSE for

little endian (e.g. VAX, Intel x86)
map = TRUE # Set to TRUE to map uid/tty numbers to names
EPSILON = 150 # New maxima difference threshold (%)
report = TRUE # Set to TRUE to report new/updated entries
unlink = FALSE # Set to TRUE to start fresh

Reporting procedure
output = ’| /usr/bin/tee /dev/console | /bin/mail root’

Databases and parameters to check
dbcheck(tty, minbmin, maxbmin, maxio, maxcount) # Terminals
dbcheck(comm, ALL) # Commands
dbcheck(uid, ALL) # Users
dbcheck(uidtty, maxcount) # Users on a terminal
dbcheck(uidcomm, minbmin, maxbmin, maxutime, # Users of a command

maxstime, maxmem, maxrw, maxcount, maxasu)

Map users and terminals into groups
usermap(caduser, john, marry, jill)
usermap(admin, root, bin, uucp, mail, news)

termmap(room202, tty31, tty32, tty33, tty34, tty35)
termmap(ptys, ttyp01, ttyp02, ttyp03, ttyp04, ttyp05, ttyp06)

Figure 1: Sample configuration file.

maxasu Superuser status.

maxcount Maximum number of times a given record has appeared in the database.

maxrw Maximum disk block input/output.

maxacore Core dump flag.

maxavio Maximum average character input/output.

maxafork Fork status.

maxetime Maximum clock time.

maxavmem Maximum average memory usage.

maxio Maximum character input/output.

Panoptiswill report process accounting records whose attributes fall above (or below) the values already
recorded in a given database.

The Panoptismonitoring options are also set in the DSL configuration file. The file contains the follow-
ing elements:

Assignments Specific variables can be assigned values to control the Panoptisbehaviour.

5

Monitoring specifications These are given using the relation dbcheck(database, attribute ...) and specify
that the given attributes should be monitored in a given database. The special attribute ALL can be
used to specify that all attributes shall be monitored.

User maps These are given using the relation usermap(abstract user, username ...) and specify that all
concrete users specified will be mapped to the given abstract user. This relation can be used to group
users into specific monitoring groups (e.g. power users, administrators, typists).

Terminal maps These are given using the relation termmap(abstract terminal, terminal name ...) and
specify that all concrete terminals specified will be mapped to the given abstract terminal. This
relation can be used to group terminals into specific monitoring groups (e.g. network terminals,
printers, data entry, etc.).

In addition, the following variables can be specified in a configuration file:

report Boolean variable. Set to TRUE to report new/updated entries.

countreport Boolean variable. Set to TRUE to report time the command was started.

unlink Boolean variable. Set to TRUE to clear existing database entries.

map Boolean variable. Set to TRUE to map uid/tty numbers to names based on the mapping of the system
where Panoptisis run.

HZ Numeric variable. The divisor used by the system to store “floating point” values.

EPSILON Numeric variable. Maximum difference threshold expressed as a percentage difference of a
new value against the previous one. When this threshold is exceeded, Panoptiswill report the specific
command.

acct String variable. Set to specify the system source of the accounting records. The following values are
currently supported:

’SVR3’ SunOS 4.X and XENIX,

’Linux’ e.g. Linux 2.2,

’SVR4’ POSIX, XOPEN, e.g. SunOS 5.6,

’fBSD’ Free BSD e.g. Free BSD 3.4.

bigend Boolean variable. Set to TRUE for big endian (e.g. Sun), FALSE for little endian (e.g. VAX, x86)
accounting records.

output String variable. Set to specify how Panoptisresults will be output. The Perl syntax used for opening
files can be used.

A sample configuration file is reproduced in Figure 1. Two variables (HZ and bigend) define the
machine’s hardware characteristics. These — in conjunction with the option map which specifies whether
the local system user and terminal names should be used for reporting — made it possible for us to run
Panoptison our system, cross-checking the accounting files of other systems. A possible setup based on
this capability could be a centralised security server monitoring a large number of remote systems. The
report and unlink settings are used for creating initial profiles. Setting unlink will create a fresh
set of profile data. In that case report could be disabled while historical data is collected and stored in
the database. The output parameter specifies the filename or process to receive Panoptis’s output. In
this example, all reports are printed on the system console and a copy is mailed to the system administrator
account.

The next section of the configuration file specifies for each of the tables outlined in section 2 the param-
eters — as described in section 1.2 — to be checked. These specifications are used to customise the profile
tables for storing only relevant profile data. In the example we provide we monitor terminals (tty) used
outside the normal hours to detect physical or network security breaches, and the number of characters trans-
fered to detect attempts to transfer data outside the system. Commands (comm) and users (uid) have all
their parameters monitored as these should quickly settle to an established pattern minimising false alarms.

6

#
Panoptis crontab file for host pooh
#
The format of this file is:
Hour Minute Day-of-month Month Day-of-week Command
* 5,25,45 * * * panoptis pooh-quick.cfg pooh.20min 20m
8-18 05 * * * panoptis pooh-hour.cfg pooh.workhour 1h
19-7 05 * * * panoptis pooh-hour.cfg pooh.late 1h
4 50 * * 1-5 panoptis pooh-day.cfg pooh.workday 24h
4 50 * * 6,0 panoptis pooh-day.cfg pooh.weekend 24h
2 20 * * 0 panoptis pooh-full.cfg pooh.weekly 7d \

/usr/adm/pacct? /usr/adm/pacct

Figure 2: Sample scheduling file.

A subsequent divergence of any of the parameters is likely to be interesting. The database containing the
users of a specific terminal is only monitored for the number of commands run from that terminal in order
to catch intruders. Finally, the database containing data for every command a user executes (uidcomm) is
monitored for the time that process is run, its use of CPU time, memory, and disk I/O, the number of times
it was executed, and whether it was executed with superuser privileges. Divergence of these parameters can
pinpoint Trojan horses, viruses, encryption crackers, operation of distributed denial of service attack tools,
and data browsers [8, 9].

The last section of the configuration file contains the grouping tuples used to specify logical sets of
terminals and users. In our example, the users of the CAD application form one group (caduser) and the
administrative accounts form another (admin). All other system users are stored and checked as individu-
als. After a process accounting entry is decoded, terminal and user names that belong to a given group are
replaced by the name of that group. As a result, records in tables that have a user name as their key (uid,
uidtty, uidcomm) will reflect the behaviour of the whole group instead of a specific user. Similarly,
this method allows terminals that are shared in one room to be checked as a single group. Pseudo-terminals
(ptys) — often used for network connections — are also grouped together as they are assigned to incoming
connections in a random way.

4 Operation

Panoptisis typically installed as a program to be executed by the system’s command scheduler crontab.
Additionally, Panoptiscan be run at system startup as a background task to continuously monitor the ac-
counting files. A sample scheduling file for Panoptisthat we used on our system is reproduced in Figure 2.
In this example, a few quick checks are run every twenty minutes (on the fifth, 25th, and 45th minute of the
hour) against the profiles stored in the pooh.20min database. Every hour a more complete check is run.
Its profiles are split into two tables; one stores the working hour (8am to 6pm) profiles (pooh.workhour)
and one the night-hour (7pm to 7am) profiles (pooh.late). Daily checks are run every night at 4:50 a.m.
Again, the profile tables are split between workdays and weekends. Finally, the complete set of accounting
files is checked using a full configuration every Sunday at 2:20 a.m.

Every time Panoptisis run, the sequence outlined in Figure 3 is executed. As one can see, Panoptis
gradully “learns” the profiles of various commands, users, and terminals and can therefore spot irregularities
that may indicate an intrusion.

An important aspect of the configuration file concerns the parameters that are set to be checked, and the
corresponding mappings. Both specifications are heuristic in nature; a set of right parameters will rapidly
identify irregular patterns signifying an intrusion without letting legitimate commands mask pottential se-
curity breaches. User mappings can group together users with similar behaviour or tasks. Examples of
potential user groups include “sales,” “developers,” “administrators,” and “system programmers.” Similar
groups can also be defined for terminals, based on the premise that different physical locations are used
for different purposes: the factory floor terminals run a different set of programs than those in the floor

7

read and parse the the domain-specific language configuration
while there are records in the specified accounting file

read and decode an accounting record
synthesise the derived quantities
substitute the name of entities belonging to a group with the group name
for every database table specified

look for an database entry matching the key of the record retrieved
if a matching entry is found

compare it with the entry read
if the accounting record value exceeds the amount stored in the database

produce a new maximum value alert and update the database
else (if no matching entry is found)

produce a new value alert and update the database

Figure 3: Panoptisoperation

occupied by administrative personnel.
The parameters checked for different entities are also important. In the following paragraphs we outline

some pertinent factors for choosing the parameters to specify on a given monitored entity.

maxhog, maxmem, maxavrw, maxstime, maxutime The maximum CPU hog factor, the maximum mem-
ory usage, the maximum average disk block input/output, and the maximum user and system times
are relevant to all monitored entities. Since, however, the same command can be used differently by
different users, it is more appropriate to monitor these factors on a user by command (uidcomm)
basis.

maxaxsig The signal exit status should be monitored for all commands. Front-end commands (eg client-
server applications) will not typically respond to signals. Signal termination of such commands may
indicate exploitations of race conditions or buffer overflows.

minbmin,maxbmin The minimum and maxinum daily start times are mostly important for users and ter-
minals which typically have quite distinct patterns of use within the day. Some commands are also
scheduled to run at specific times; monitoring these factors against commands can catch abnormal
uses.

maxasu Given the security model of Unix systems, the superuser status of a command should be closely
monitored for all entity combinations. Most cases where a new command, user, or terminal acquire
superuser status should be carefuly investigated.

maxcount The maximum number of times accounting records appear for a given entity can pinpoint some
denial of service-type attacks, typically without generating extraneous noise. It should therefore be
monitored for all entities.

maxacore The core dump flag should be monitored for all commands and terminals. Failed attempts to
exploit a buffer overflow often result in core dumps.

maxavio, maxio The maximum (average) character input/output should be monitored for terminals since
it can be used to detect attempts to transfer data in or out of the system.

maxafork Monitoring the fork status on commands can detect trojan horses since they often behave differ-
ently in this aspect than the original command.

maxetime Finally, the maximum clock time should be monitored for commands executed by specific users.
These tend to have distinct profiles of usage; variations should trigger an alarm.

8

0

50

100

150

200

250

300

350

400

8 9 10 11 12 13 14 15 16

N
um

be
r

of
 a

no
m

al
ie

s

Date

Figure 4: Number of anomalies over the weekly period leading to the intrusion.

5 Incident Detection

On Saturday, January 13th, 2001, a system under our administrative control was compromised. The system
was directly connected to the Internet and running the FreeBSD 3.0-RELEASE version of Unix. It is used
as an Internet gateway providing email, web, FTP, and DNS services. It hosts only three user accounts
(mostly used for system administration), and is accessed using ssh. One month before the incident, we
performed a port scan on it using the Nessustool. The single vulnerability that Nessusdetected (a domain-
name service daemon vulnerability) was fixed by installing an updated version of named. Figure 4 depicts
the number of anomalies detected by Panoptisover the weekly period leading to the intrusion. In order
to demonstrate how a Panoptissystem is trained, we deleted all table contents prior to January 9th. Each
new Panoptisinvocation starts at 02:00 in the morning after the daily cron jobs are run. The number of
anomalies shown for the 9th mostly represent the working-hour workload of the host. The rise on the 10th
represents the additional maintenance jobs executed overnight by cron (web and email accounting, updates,
search engine indexing, statistics, backup, security checks). After the database tables have been primed
the number of detected anomalies fall to 27 (on the 11th) and 18 (on the 12th). In normal operation, the
number of anomalies detected by Panoptisfall further under stable system operation (as can be seen on
January 14th). In our case, on January 13th a cracker attacked our system from an ISP dial-in connection.
The rise of anomalies detected in a 24 hour period (358 against of the previous “training” maximum of
169) should alert any competent system administrator. The 349 anomalies found by Panoptison the 15th
represent system administration actions performed to investigate the cracker’s activity and mitigate the
compromise. Figure 5 (page 14) contains some representative entries slightly edited to remove extraneous
information and substitute meaningful names for numeric identifiers (Panoptiscan perform this substitution
automatically, but only when running directly on the target system; for techinical reasons this post-mortem
analysis could not be performed on the compromised system.) The commands are typical of those run by
an intruder. The intruder(s) probably used a buffer overflow in the mail system POP server to gain system
access. After gaining access, they checked for other users on the system (w), the files in various directories
(ls) and the binary contents on some files (objdump), and proceeded to compile and install a modified
version of a setuid program (gcc, chown, chmod).

9

6 Evaluation

A monitoring system can fail in two different ways:

Type I error Failing to report an important event (false negative, silence).

Type II error Reporting a large number of unimportant events letting important ones passing unnoticed
(false positive, noise).

In addition, a security monitoring system can fail either because an intruder uses an attack mode not antici-
pated or covered by its design (a system limitation), or because the intruder intentionally tries to get around
it (a system weakness).

Panoptis’s heuristic nature will result in both silence and noise. Noise is gradually eliminated as more
and more cases are added to the profile data. Silence can result either from security breaches that are
outside the system’s domain, or from an intruder’s deliberate exploitation of the system’s weaknesses. As
the system is based on process accounting records, a number of other important information that could lead
to the detection of security problems is not examined. Examples of other entities that could be monitored
and included in the profile data include system calls made by a process, network connections, and patterns of
file access. Monitoring these entities would require operating system kernel modifications [4]; we decided
against them in order to keep the system portable and easy to install.

An intruder knowing Panoptis’s architecture and configuration could also foil the system by:

� generating legitimate “noise” in order to hide a culprit process,

� an attack based on a non-terminating process (such as system daemons) which are not normally
logged,

� using an interpreter such as Perl [31] to access system resources without invoking external processes,

� changing the name of the offending command to a benign name,

� gradually and legitimately changing the usage profile of an entity avoiding the suspicion caused by a
sudden change,

� filling the disk where administrative data is kept in order to disable process accounting, or

� exploiting Panoptis’s relatively large time window between the occurrence of a suspicious event and
its detection.

On the plus side, Panoptis’s open ended nature can result in the detection of security problems unan-
ticipated during its design and deployment. Some of the attacks described can be defended by careful
installation and configuration. Countermeasures include keeping the accounting records in a filesystem
that has no publically writable directories (by default process accounting records and the temporary file
directory residing on the same filesystem), and the protection of the configuration file and the reports from
unauthorised reading to make the planning of an undetected attack difficult.

We have run Panoptison the accounting records of our site, an academic site X-terminal server, a
dialup/WWW server and a C/database development machine. After some time of tuning and profile collec-
tion, Panoptis’s reports are reduced to a steady trickle reflecting the users’ change of interests or mode of
work and the introduction of new programs on the system. Although Panoptishas up to now caught only a
single security violation, the results we have so far obtained are encouraging. In some cases, Panoptishas
helped us identify sources of system performance degradation or potential security problems. Furthermore,
in a Gedankenexperiment2 we performed based on five security breaches described in [3], we found that
four of them could have been caught by Panoptis.

An important aspect of an intrusion detection system is its impact on the systems it monitors. Panoptis
monitors the system at a rather coarse level utilising existing process accounting data that is by default
measured by Unix kernels. On a 366MHz Pentium II machine, Panoptis, running the specification that was

2Gedankenexperimentis a technical term used by physicists for an experiment which is only described but not made in reality, as it
is not possible or was not possible when someone thought of it for the first time. By imagining the given experiment, one will hopefully
reach interesting conclusions (e.g. the Einstein-Podolsky-Rosen Gedankenexperiment). The term was popularized by Einstein, who
relied heavily on Gedankenexperiments both in his derivation of relativity and in his arguments with Bohr about quantum mechanics.

10

used to detect the incident described in section 5, will process 320 process accounting records per second
(3ms / record). The time taken to analyse a record is of the same order of magnitude as that needed by the
kernel to fork and execute a process. Thus continous monitoring is feasible on moderately loaded systems,
or on systems that execute mostly long-running processes. A pathological case involves the execution
of pure shell-scripts relying on thousands of short process executions (eval, expr, test, etc). In such an
environment, Panoptismay account for up to 50% of the system’s load. In typical cases, however, Panoptis
adds negligible overhead to the system’s operation.

7 Related Work

In an early study on real-time intrusion detection [2], it was suggested that an intruder could be detected by
monitoring certain system-wide parameters (i.e. CPU use, memory use, disk activity, keystroke dynamics,
etc.), and compare them with what had been historically established as normal or expected for that facility.
It was, also, suggested to profile the normal behavior of programs, files, and other objects. This is often
called a statistical anomaly detection approach. Until this study, the relevant work focused on developing
procedures and algorithms for automating the offline security analysis of audit trails.

On the basis of the above, SRI scientists developed IDES (Intrusion Detection Expert System) [22] and
Next-generation IDES [1]. IDES is a system that continuously monitors user behavior and detects suspicious
behavior as it occurs. IDES takes the approach that intrusions can be detected by flagging departures from
historically established norms of behavior for individual users. To support the idea, various intrusion detec-
tion measures are profiled for each user and statistical processing of them is carried out by the monitoring
facility.

Intruders often use known paths to attack a system (e.g. programmed password attacks, access to
privileged files, exploitation of known vulnerabilities, etc.). With a model-based reasoning, specific models
of defending prescribed attacks can be developed [11]. Other approaches are either defining acceptable, as
opposed to intrusive, behavior [15], or — on earlier stages of technology — are based on the introduction
of trap doors for intruders (i.e. “bogus” user accounts with “magic” passwords, etc.) [19]. None of them is
sufficient alone, since it addresses a specific type of threats.

Several studies have demonstrated that the use of specialized (security-focused) audit trails is needed
for security purposes. In addition to the raw audit data itself, additional data could prove to be useful or
necessary for intrusion detection: external facts (e.g. changes in user job description), supporting facts (e.g.
file attributes), and profiles of expected behavior (e.g. time schedules). It seems to be a fact, that effective
intrusion detection will not come into widespread use until good security auditing mechanisms are in place
[21].

The appropriate level of auditing is really important. It has been suggested [17, 24] that the audit should
be performed at the lowest possible level (e.g. monitoring system service calls), because in this case, to
circumvent auditing is harder.

The more recent studies on intrusion detection focus more on the topology of the modern information
systems environment. As a result, network intrusion detection systems have been developed [27, 30].
The cornerstone of these systems is also a domain-specific language that enables concise specification of
network packet contents under normal/expected and/or attack conditions. These approaches claim to have
easy-to-develop intrusion specifications, to carry out high-speed and large-volume monitoring, to be robust
and extensible, and to use a comprehensive evaluation framework.

Over the last years, the increasing number of security attacks and the corresponding detection and
reporting frameworks and tools have resulted in the design and adoption of a number of languages for
specifying systems and communicating information. Eckmann et al. [10] distinguish six classes of relevant
languages: event, response, reporting, correlation, exploit, and detection languages. The DSL used by
Panoptiscan be classified as a detection language. Other detection languages include ASAX [12], the
language used in the Bro system [23], P-BEST [20], N-code [26], STATL [10], and specification languages
[16, 28]. Our approach is not general-purpose as some of the above languages, but targets a specific area
(intrusion detection using process accounting records) with a narrow but focused, we hope, language that
can efficiently describe how accounting records shall be processed to recognise anomalies.

11

8 Conclusions and Further Work

The use of a domain-specific language can make process accounting data ammenable to intrusion detection.
Panoptisfirst expands the accounting data space by deriving new quantities from the existing records and
scattering the results into the three dimensions of value, monitored entity, and time interval. It then analyses
the data by comparing it against the profiles of the past it has stored on a database and reports any significant
changes. The numerous parameters that affect Panoptis’s performance can be easily tuned to match the
characteristics of the system being supervised forming heuristic rules. This approach is flexible and provides
useful results while limiting extraneous noise.

After using Panoptisfor some time we found out that the data evaluated can be expanded in a number
of ways by increasing the number of derived properties. Some examples include the addition of running
averages, and the mapping of pseudo-terminals to IP addresses. In addition, report triggering can be made
more selective by introducing thresholds, counters, and combined conditions. This new complexity will
require enhancing the system’s DSL. Some additions we are investigating are the treatment of the database
tables as first class variables, the integration of the time dimension, the provision of predicate logic rules, and
support for installable components within the common intrusion detection framework [14]. Ultimately, we
would like to investigate how a number of specialised intrusion detection modules like Panoptis, each based
on a narrow domain-specific language, can be combined into a confederated intrusion detection system.

Acknowledgements

The authors would like to thank the anonymous reviewers for their insightful comments on earlier versions
of this paper.

References

[1] D. Anderson et al. Next-generation intrusion detection expert system (NIDES): A summary. Technical
Report SRI-CSL-95-07, SRI Int’l., 1995.

[2] J. Anderson. Computer security threat monitoring and surveillance. Technical report, J. Anderson
Co., Pennsylvania, Apr. 1980.

[3] F. Baran, H. Kaye, and M. Suarez. Security breaches: Five recent incidents at Columbia university. In
UNIX Security Workshop II, pages 151–171, Portland, OR, USA, Aug. 1990. Usenix Association.

[4] D. S. Bauser and M. E. Koblentz. NIDX — a real-time intrusion detection expert system. In USENIX
Conference Proceedings, pages 261–273, San Francisco, CA, USA, Summer 1988. Usenix Associa-
tion.

[5] J. Bell, F. Bellegarde, J. Hook, R. B. Kieburtz, A. Kotov, J. Lewis, L. McKinney, D. P. Oliva, T. Sheard,
L. Tong, L. Walton, and T. Zhou. Software design for reliability and reuse: a proof-of-concept demon-
stration. In Conference on TRI-Ada ’94, pages 396–404. ACM, ACM Press, 1994.

[6] T. Berners-Lee and D. Connolly. RFC 1866: Hypertext Markup Language — 2.0, Nov. 1995. Status:
PROPOSED STANDARD.

[7] D. E. R. Denning. Cryptography and Data Security. Addison-Wesley, 1983.

[8] P. J. Denning. Computers Under Attack: Intruders, Worms, and Viruses. Addison-Wesley, 1990.

[9] T. Duff. Experience with viruses on UNIX systems. Computing Systems, 2(2):155–171, Spring 1989.

[10] S. Eckmann, G. Vigna, and R. Kemmerer. STATL: An attack language for state-based intrusion
detection. In Proceedings of the ACM Workshop on Intrusion Detection, Athens, Greece, Nov. 2000.
ACM.

[11] T. Garvey and T. Lunt. Model-based intrusion detection. In 14th National Computer Security Confer-
ence, 1991.

12

[12] N. Habra, B. L. Charlier, A. Mounji, and I. Mathieu. ASAX: Software architecture and rule-based
language for universal audit trail analysis. In ESORICS 92, Toulouse, France, Nov. 1992.

[13] S. C. Johnson and M. E. Lesk. Language development tools. Bell System Technical Journal,
56(6):2155–2176, July-August 1987.

[14] C. Kahn, P. Porras, S. Staniford-Chen, and B. Tung. A common intrusion detection framework.
Available online http://www.gidos.org, July 1998.

[15] P. Karger. Limiting the damage potential of discretionary Trojan horses. In IEEE Symposium on
Security and Privacy, pages 32–37. IEEE Press, 1987.

[16] C. Ko, M. Ruschitzka, and K. Levitt. Execution monitoring of security-critical programs in distributed
systems: A specification-based approach. In 1997 IEEE Symposium on Security and Privacy, pages
175–187. IEEE, 1997.

[17] J. Kuhn. Research towards intrusion detection through the automated abstraction of audit data. In 9th
National Computer Security Conference, 1986.

[18] S. J. Leffler, M. K. McKusick, M. J. Karels, and J. S. Quarterman. The Design and Implementation of
the 4.3BSD Unix Operating System. Addison-Wesley, 1988.

[19] R. Linde. Operating system penetration. In National Computer Conference, 1975.

[20] U. Lindqvist and P. A. Porras. Detecting computer and network misuse with the production-based
expert system toolset (P-BEST). In IEEE Symposium on Security and Privacy, Oakland, CA, May
1999. IEEE.

[21] T. Lunt. A survey of intrusion detection techniques. Computers and Security, 12(4):405–418, June
1993.

[22] T. Lunt et al. A real-time intrusion-detection expert system. Technical Report SRI-CSL-92-05, SRI
Int’l., 1992.

[23] V. Paxson. A system for detecting network intruders in real-time. In 7th USENIX Security Symposium,
San Antonio, TX, Jan. 1998. Usenix Association.

[24] J. Picciotto. The design of an effective auditing subsystem. In IEEE Symposium on Research in
Security and Privacy, pages 13–22. IEEE Press, 1987.

[25] J. C. Ramming, editor. USENIX Conference on Domain-Specific Languages, Santa Monica, CA, USA,
Oct. 1997. Usenix Association.

[26] M. J. Ranum, K. Landfield, M. Stolarchuck, M. Sienkiewicz, A. Lambeth, and E. Wall. Implementing
a generalized tool for network monitoring. In 11th Systems Administration Conference (LISA ’97).
Usenix Association, Oct. 1997.

[27] R. Sekar et al. A high-performance network intrusion detection system. In 6th ACM Conference on
Computer and Communication Security, pages 8–17. ACM Press, 1999.

[28] R. Sekar and P. Uppuluri. Synthesizing fast intrusion detection/prevention systems from high-level
specifications. In 8th USENIX Security Symposium. Usenix Association, 1999.

[29] D. Spinellis and V. Guruprasad. Lightweight languages as software engineering tools. In Ramming
[25], pages 67–76.

[30] G. Vigna and R. Kemmerer. NetSTAT: A network-based intrusion detection approach. In Computer
Security Applications Conference, 1998.

[31] L. Wall, T. Christiansen, R. L. Schwartz, and S. Potter. Programming Perl. O’Reilly and Associates,
Sebastopol, CA, USA, second edition, 1996.

13

Database Users*Commands, key [root/popper]: New entry.
Command: popper Terminal: ttyp1 User: root
Executed from: 2001-01-13 01:27:53 to: 2001-01-13 01:28:09 (16.2 seconds)
spending 0.12 seconds in kernel space and 0.04 seconds in user space
(0.16 total) and using the CPU for 1% of the time.
Character I/O: 4 characters (average I/O: 24.00 characters / CPU second)
Disk I/O: 0 K (average I/O: 0.00 K / CPU second)
Memory accounted: 2.58 K (average size: 8.06 K)

Database Users*Commands, key [dds/popper]: New entry.
Command: popper Terminal: ttyp1 User: dds
Executed from: 2001-01-13 01:28:20 to: 2001-01-13 01:28:34 (14.47 seconds)

Database Commands, key [w]: New entry.
Command: w Terminal: ttyp0 User: dds
Executed from: 2001-01-13 01:29:29 to: 2001-01-13 01:29:29 (0.32 seconds)

Database Users*Commands, key [dds/w]: New entry.
Command: w Terminal: ttyp0 User: dds
Executed from: 2001-01-13 01:29:29 to: 2001-01-13 01:29:29 (0.32 seconds)

Database Users*Commands, key [dds/ls]: New entry.
Command: ls Terminal: ttyp0 User: dds
Executed from: 2001-01-13 01:29:32 to: 2001-01-13 01:29:32 (0.36 seconds)

Database Users*Commands, key [root/awk]:
New maximum average character input/output (204.8 / 64; 220%)
Command: awk Terminal: ttyp1 User: root
Executed from: 2001-01-13 01:32:13 to: 2001-01-13 01:32:13 (0.41 seconds)

Database Users*Commands, key [dds/uname]: New entry.
Command: uname Terminal: ttyp0 User: dds
Executed from: 2001-01-13 01:33:14 to: 2001-01-13 01:33:14 (0.3 seconds)

Database Commands, key [objdump]: New entry.
Command: objdump Terminal: ttyp0 User: dds
Executed from: 2001-01-13 01:39:27 to: 2001-01-13 01:39:28 (1.26 seconds)
spending 0.09 seconds in kernel space and 0.02 seconds in user space

Database Commands, key [fitso]: New entry.
Command: fitso Terminal: ttyp0 User: dds
Executed from: 2001-01-13 01:46:14 to: 2001-01-13 01:46:14 (0.06 seconds)

Database Users*Commands, key [root/chown]: New entry.
Command: chown Terminal: ttyp1 User: root
Executed from: 2001-01-13 02:00:04 to: 2001-01-13 02:00:04 (0.06 seconds)

Database Commands, key [gcc]: New maximum daily start time (419 / 145; 189%)
Command: gcc Terminal: ttyp1 User: root

Figure 5: The Panoptisreport from the compromised system.

14

