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Abstract

Development environments based on ActiveX controls and
JavaBeans are marketed as “visual programming” plat-
forms; in practice their visual dimension is limited to the
design and implementation of an application’s graphical
user interface (Gul. The availability of sophisticated Gul
development environments and visual component develop-
ment frameworks is now providing viable platforms for
implementing visual programming within general-purpose
platforms, i.e. for the specification of non-Gui program
functionality using visual representations. We describe
how specially-designed reflective components can be used
in an industry-standard visual programming environment
to graphically specify sophisticated data transformation
pipelines that interact with Gul elements. The components
are based on Unix-style filters repackaged as ActiveX con-
trols. Their visual layout on the development environment
canvas is used to specify the connection topology of the
resultant pipeline. The process of converting filter-style
programs as visual controls is automated using a domain-
specific language. We demonstrate the approach through
the design and the visual implementation of a Gui-based
spelling checker.
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I ntroduction

A number of environments support the visual composition
of graphical user interfaces (GuIs) using components with a
predefined set of interfaces. In addition, technologies such
as ActiveX and JavaBeans allow the development of visual
components (typically Gui elements) that can be seamlessly
incorporated into an integrated development environment
(1DE) and subsequently used in application development. In
this article we present how visual IDES and components can
be extended beyond GuI development to support visual pro-
gramming for a particular domain.

A visual programming language can be informally de-
fined as a programming language with a syntax that in-
cludes visual expressions such as diagrams, free-hand
sketches, icons, or graphical manipulations [1]. Visual
programming approaches aim towards easing the program-
ming learning curve or enhancing programming productiv-
ity. Their adoption was based on a number of premises [2]:

e pictures may be able to concisely convey meaning
more efficiently than words,

e pictures could help understanding and remembering,

e pictures may enhance the experience of programming
by making it more interesting, and

e culturally-neutral pictures can be understandable re-
gardless of what language people speak.

However, empirical studies did not find visual programming
inherently superior to text-based programs; the extent to
which a given notation is suitable for expressing a partic-
ular task depends on the context in which the language is
employed [3, 4, 5]. Early work on visual programming,
although promising when applied to “toy” problems, ran
into difficulties when the methods were tried on problems
of realistic size. Two approaches for alleviating this prob-
lem were followed: a number of researchers applied visual
programming languages to limited or domain-specific parts
of software development such as Gul programming, the



graphic depiction of data structure behaviour, or the combi-
nation of textually programmed units to build new programs
[1]. Others, proposed the design of visual programming
languages based on formalisms used by existing, standard,
component-based visual engineering languages such as the
ITU-T MsSC standard for message sequence charts, or the
IEC-1131 standard for function block languages [6].

In our approach we capitalise on the strength of exist-
ing Gul-builder I1DES by crafting industry-standard soft-
ware components that can be used within the cul-designer
of the IDE to perform data-flow-oriented visual program-
ming. Although we demonstrate our method in the context
of a specific domain (the visual composition of data-flow
pipelines), the same underlying principles can be applied to
different visual programming domains.

We define a software component as a unit of composition
with contractually specified interfaces and explicit context
dependencies only; one that can be deployed independently
and is subject to third-party composition [7]. Components,
in common with objects, encapsulate state, allow access
to it through separately described interfaces, and support
modular design based on separation of concerns. However,
components differ from objects in a number of ways: they
can be implemented in different languages, they are often
packaged in binary containers, they can encapsulate multi-
ple objects, and are typically more robustly packaged than
objects [8]. Components that support visual composition
implement a set of interfaces defined by the visual pro-
gramming environment that supports their use. These inter-
faces allow the visual placement of components on forms,
the handling of user-input events, and the persistent spec-
ification of their properties at program design time. Two
widespread families of visual components are JavaBeans
[9] and ActiveX controls [10].

Visual components are supported by a number of IDEs.
Typical examples are Visual Basic (vB), Delphi, JBuilder,
Latte, and Visual Café. Although ActiveX controls, Jav-
aBeans, and their respective environments are marketed as
“visual programming” technologies, in practice, their vi-
sual dimension is limited to the design and implementa-
tion of graphical user interfaces (Guis). A number of sys-
tems such as Khoros/Cantata [11, 12] and LabVIEW [13]
support component-based visual programming — also re-
ferred to as coarse-grained visual programming — using
specialised components and a corresponding dedicated de-
velopment environment. Now, the availability of sophisti-
cated GuI-builder IDES and the respective component de-
velopment frameworks provides us with an alternative ap-
proach for implementing coarse-grained visual program-
ming: one based on widely deployed, industry-standard
platforms.

In the following sections we present how specially-
designed reflective components can be used in an industry-
standard visual programming environment to visually spec-
ify sophisticated data transformation pipelines that interact
with GuI elements. The remainder of this paper is struc-
tured as follows: Section discusses our selection of com-

ponents and their execution environment; Section presents
how the controls we have implemented support visual pro-
gramming; in Section we analyse the design and implemen-
tation of the visual controls, in Section we present how the
control creation process can be automated, in Section we
describe an exemplar application utilising visual program-
ming controls, and in Section we evaluate the approach we
propose. Section concludes the paper with directions for
further work.

The elements of our approach: visual programming,
component-based development, a graphical front-end to
Unix tools, data-flow visual languages, and pipe and filter
architectures have been extensively studied. See for exam-
ple the references [2, 14, 1, 15, 6] (discussing visual pro-
gramming and providing examples of specific approaches),
[16, 17, 18, 3] (discussing graphical Unix-tool front ends),
[19, 20, 21, 7, 22] (discussing component-based develop-
ment), [17, 23, 24, 25, 26, 27] (discussing visual data-flow
approaches), and [28, 29] (discussing pipe and filter archi-
tectures). The main contributions of this paper are: the pro-
posal to use standard Gul builders as visual programming
environments by means of specially crafted reflective com-
ponents, the idea that cul builders can be used to configure
sophisticated component interactions and deployment sce-
narios, and the demonstration of visual programming and
Gul interfacing utilising the well-known Unix text process-
ing tools encapsulated as ActiveX components.

Component Source and Execution En-
vironment

Most existing visual components (also known as controls
or widgets) provide Gul interface elements. Typical exam-
ples include text-input boxes, buttons, list boxes, grids, ra-
dio buttons, graphs, and file selection dialogs. The few vi-
sual components that do provide computationally interest-
ing processing (such as Microsoft’s Internet Transfer con-
trol used to perform HTTP/FTP data transfers) do not utilise
their visual dimension; they are presumably packaged as
visual components in order to expose their properties for
editing using the standard IDE property editing mecha-
nisms. Our candidates for repackaging as visual compo-
nents had to provide non-trivial computational functional-
ity, be amenable to visual manipulation, and be available for
reuse. We decided to base our work on the numerous user
and system programs available under the Unix operating
system implementations. Based on the Unix tool-centred
philosophy, software developers have created a large collec-
tion of programs that provide a single service (e.g. compare
two files, search for a pattern, deliver mail) without requir-
ing user interaction. Many of those programs are imple-
mented using state-of-the-art algorithms, have been stress-
tested in many diverse applications for decades, and have
their interface and operation standardised under efforts such
as PosIX [30]. Unix filter-style tools can be combined using



pipelines; an abstraction with obvious visual connotations.
In addition, many of these programs are freely available in
source code form through Open Source initiatives such as
GNU and BSD. The initial selection of the visual program-
ming controls builds upon our previous work on component
mining [31, 32] where we defined a pattern language for
converting such programs into (non visual) components.

A visual component (an ActiveX control or a JavaBean)
is characterised by properties, events, and methods. Prop-
erties affect the appearance (e.g. the background colour),
functionality, or state of the control or bean. Events are
notifications sent by the controls or beans to let programs
using them know that a specific action (such as a mouse
click) has occurred. Methods are other functions that can
be called from within the program that hosts the control or
bean to perform some processing. By packaging Unix tools
as visual components we gain a number of benefits:

o the relative placement of the tools on the environ-
ment’s graphical canvas can be used to define data pro-
cessing pipelines,

e the two-dimensional nature of the canvas allows
the implementation of more sophisticated pipelines
than the ones that can be specified using the one-
dimensional Unix shell command line,

o the integration of the tools in a graphical environment
allows the implementation of Gul applications where
the tools can interact with a variety of standard Gul
controls (widgets), and

e the Unix letter-style command-line options can be ex-
posed as properties that can be graphically specified
using the IDE’s property box.

We decided to package the Unix tools as ActiveX con-
trols, based on our previous experience with packaging
them as com (Component Object Model) objects and the
availability of framework support for efficient control im-
plementation. ActiveX controls can be used in a number of
environments on Microsoft-Intel platforms such as the vB
IDE, and the Internet Explorer. Although a JavaBeans-based
implementation could have resulted in highly portable com-
ponents, this did not apply in our case since most Unix
tools are implemented in C and will not benefit from the
Java binary-level portability. Our approach however, is not
Microsoft-specific; the ideas we present can be employed
in any environment that supports visual components with
basic reflective capabilities.

Visual Programming

The visual Unix-filter components (VUFC) we implemented
support the graphical specification of data-flow pipelines.
The relative position of the components on the IDE design
canvas determines the flow of data between them. Compo-
nents, representing processes, can have input ports, which

are used to read data, and output ports where data is output.
The two-dimensional nature of the design canvas allows us
to build sophisticated non-linear filter topologies. The de-
fault flow of data across components follows the — stan-
dard in western cultures — top-to-bottom and left-to-right
direction. Ports are numbered clockwise from the bottom
left edge of the control; this numbering scheme and the de-
fault port values used (0 for input, 1 for output) result in
the data flow direction we described. When programmers
want to override the default direction, control properties al-
low them to specify the port number to be used for each
input or output function (e.g. assign the input to port 3).
We found the port numbering scheme intuitive and conve-
nient; however, port numbers could also have been spec-
ified in a graphical way by implementing a custom prop-
erty editor (a facility available both for ActiveX controls
and JavaBeans). Controls are freely drawn in arbitrary sizes
and positions using the graphical design facilities of the IDE
GUI editor; controls that are very close together are consid-
ered connected. Apart from setting non-default directions
for data flow, the programmer needs only to specify filter-
specific options (e.g. set a filter to sort in descending order).
These are typically provided as component properties and
can therefore be easily set, again without any code writing,
from within the IDE property editor. A co-ordinating com-
ponent is placed on the canvas to synchronise the actions
of all visual components it contains. This component can
be activated at design time to visualise the current connec-
tion status of all visual components using input and out-
put arrows. In addition, the component provides a runtime
method for starting the operation of the pipeline, activating
all its members and waiting until processing is finished.

Our approach is based on three types of visual compo-
nents:

Filter components are encapsulating a standard Unix filter-
style process such as sort, cat, or wc. In addition, a
generic filter component allows the realisation of ar-
bitrary filter commands; however, this filter’s opera-
tion is not determined by specific properties (e.g. Sor-
tOrder), but by a single property containing the cus-
tomary Unix-style command-line options.

Connector components connect two components from
within our family; they are implemented as a visual
encapsulation of the operating system pipe abstraction.

Glue components connect our visual components with
other gul elements such as edit boxes and list boxes.

The way VUFC components are visualised on the IDE design
canvas is shown in Figure 1. The T (pipe split) component
and the controls on its left move data in the right-to-left
direction; they are the only ones where the port assignment
properties had to be manually specified.
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Component Encapsulation and Oper a-
tion

We created the visual components in a two-step process.
We first mined and packaged Unix tools, connectors, and
glue as (non visual) com components. We then packaged
the com components as ActiveX controls. The architecture
of the resulting components is illustrated in Figure 2.
Implementing com components from scratch in C++ is
not trivial. Every component, in addition to its custom func-
tionality, must support registration, an interface for creating
component instances called IClassFactory, object creation,
reference counting, the Querylnterface method, and, possi-
bly, dual interfaces for supporting its use through C++ and
automation-based scripting languages. Fortunately, these
tasks are supported by the Microsoft Foundation Classes
(MFC), a large, monolithic application framework for pro-
gramming in Microsoft Windows, and by the Active Tem-
plate Library (ATL) a leaner set of template-based classes
that specifically target the development of com compo-
nents. We implemented the mined components using ATL.
By aggressively utilising C++ templates and multiple in-
heritance, ATL supports the development of com compo-
nents with brevity and minimal runtime overhead. A bare-
bones ATL-based COM component can be implemented in
less than 100 lines; most of them automatically generated

by a “wizard”-type tool. We therefore found ATL to be ideal
for implementing the large number of Unix-mined compo-
nents and used it as a basis to automate the task. The full
details of this operation are described in reference [32].

The second step of the visual component implementation
involved the addition of visual component functionality to
extend com objects to fully fledged ActiveX controls. We
initially attempted to provide this functionality by extend-
ing the ATL-based implementation of each component, but
were quickly overwhelmed by the complexity of the task.
We found that the addition of a single property to a con-
trol required non-trivial code and data additions to a num-
ber of C++, IDL (interface definition language), and header
files. More importantly, more than 100 lines of inscrutable
and unmaintainable code were needed to provide the, crit-
ical for our needs, functionality of neighbour control enu-
meration. We then experimented with the ActiveX control
creation facilities of the vB IDE and found the operation
reasonably streamlined and programmer-friendly. We re-
tained the ATL-based components as a basis for our work,
because their implementation was based on a number of
system-level facilities (such as threads, pipes, non-blocking
I/0, and handle cloning) that are not available in the vB
environment. Our visual component architecture therefore
involves wrapping each com component within an ActiveX
visual control, and, one additional co-ordinating component
implemented from scratch in vB.

The stability of our pre-packaged com components, in
conjunction with the quick edit-run cycle, the easy access
to component properties, and the high-level facilities for
graphics programming provided by vB allowed us to im-
plement the full functionality we required in a fraction of
the time of the previous ATL-based aborted attempt.

The ability of the components to connect themselves to-
gether, depending on their location on the IDE design can-
vas, is based on their reflective capabilities i.e. their ability
to examine their and their neighbours location.

The foundation for the concept of reflection is Smith’s
reflection hypothesis [33], which states that reflective pro-
grams can access, reason about, or alter their interpreta-
tion. In our case, ActiveX controls have properties, avail-
able both at design and at run time, that can be used to ac-
cess their location and enumerate the other controls that ex-
ist on the same canvas. We exploit this reflective capability
to link the visual representation of the controls with their
operational behaviour.

All visual components support a number of common
properties and methods and some component-specific prop-
erties as shown in Figure 3. The component-specific proper-
ties are used to provide details on how the control will per-
form its processing (e.g. MergeOnly, FoldCase, Reverse)
and (in exceptional cases) to specify the visual flow of data
(InPort, OutPort). The common properties (Height, Left,
Width, Right, Enabled, Name, Visible) are provided and im-
plemented by the vB IDE and are needed to support the vi-
sual dimension and programmability of the controls. These
properties include the location, dimension, and visibility of
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each control. The common methods (Visualize(), Prepare(),
Plumb(), Run(), Execution()) form an interface that all vi-
sual components in our framework must provide. They are
used by the co-ordinating control to orchestrate the visu-
alisation and interconnection of the visual control setup as
a network of co-operating processes. The methods of this
interface work as follows:

Visualize is called during design or run time to provide the
programmer with a view of the data-flow across the
system. Solid arrows are used to indicate the flow of
data at the input and output ports of the glue and filter
components, while a single line arrow is drawn from
the input to the output in all connector (pipe) compo-
nents. Each component is responsible for drawing its
own visual representation. It does this by enumerating
all its connected neighbours, sorting them according
to our defined port ordering, and assigning them to the
respective ports specified by the programmer.

Prepare is the first operation performed on all controls be-
fore the configured system starts running. Controls are
responsible for setting-up their internal state so that
other controls can connect to them. As an example, the
pipe control creates at this point the two pipe handles.
The provision of a separate step used before the exe-
cution commences obviates the need of connecting the
components based on their topological ordering and al-
lows more flexible pipeline topologies.

Plumb is the second operation performed on all controls
before the system runs. At this step each control con-
nects to its neighbours, setting for example its standard
output to the handle of the pipe it connects to.

command "sort"

options {
MergeOnly:bool:-m:False:Merge already sorted files, do not sort
CheckOnly:bool:-c:False:Check if given files already sorted, do not sort
Month:bool:-M:False:Compare (unknown) < ‘JAN’ < ... < ‘DEC’, imply IgnoreBlanks
IgnoreBlanks:bool:-b:False:Ignore leading blanks in sort fields or keys

TmpDirectory:string:-T:"":Use specified directory for temporary files, not $TMPDIR or /tmp

FoldCase:bool:-f:False:Fold lower case to upper case characters in keys
Alphanumeric:bool:-d:False:Consider only [a-zA-Z0-9 ] characters in keys
ASCII:bool:-i:False:Consider only [\040-\0176] characters in keys

NumericCompare:bool:-n:False:Compare according to string numerical value, imply IgnoreBlanks

OutputFile:string:-o:"":Write result on file instead of standard output
Reverse:bool:-r:False:Reverse the result of comparisons
StableSort:bool:-s:False:Stabilize sort by disabling last resort comparison

FieldSeparator:string:-t:"":Use separator instead of non- to whitespace transition
Unique:bool:-u:False:Only output the first of an equal sequence (with CheckOnly check for strict

Figure 4: Declarative description of the sort command.

Run is a method that makes components begin process-
ing their data. It is a do-nothing operation for passive
components implemented as operating system abstrac-
tions (connectors, implemented as pipes); active com-
ponents (filters and glue) at this step start-up a separate
process or thread. This step is the last operation for
bringing up a running pipeline.

Executing is a method that returns true if a control is inter-
nally processing data. In order to avoid deadlocks filter
and glue controls process their data asynchronously as
independent threads or processes. The co-ordinating
control waits for the completion of the pipeline opera-
tion by monitoring the executing status of all controls
on the canvas.

Automating Control Creation

Although the plethora of available filter-style tools provided
us with a rich selection of candidates for encapsulation as
visual controls, it made us realise that the act of encapsula-
tion is a labour intensive and time consuming task. Follow-
ing an earlier experience in automating packaging of Unix
tools as com objects [32] we defined a process and imple-
mented support tools for automating the creation of filter-
style vUFc controls. Specifically, for every filter that is to
be converted into a control, one has to define the syntax and
semantics of the tool’s command-line options using a small
domain-specific language [34]. An example of this descrip-
tion for the sort filter is depicted in Figure 4. For every filter
command line option (e.g. -r) one specifies:

e a meaningful name that is to be used as the respective
control property,

e the option’s type (bool for stand-alone options; string,
int, or double for options that take arguments of the
respective type),

o the option’s default value,

e a descriptive text that appears as help for the given
property in component object browsers and the IDE
property editor, and
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o the respective letter code expected by the filter as a
command-line argument.

A small compiler, implemented in Perl [35], compiles
the declarative description of the filter interface into a vB
control definition source file that implements the respective
component (e.g. VUFCsort). The code contains:

e a member variable for every filter command-line op-
tion,

e methods for getting and setting the member variable
value (thus exposing the command-line option as a
“property” of the component),

e methods for loading and saving the property values,

e a method for initialising the properties to a known
state, and

e a method for executing the filter with a command line
constructed dynamically to match the values of the
component’s properties.
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The component also inherits (due to vB limitations, by
source code reuse) and exposes as properties the common
methods and properties of the standard VUFC interface. An
example of how the properties of the automatically created
VUFCsort component appear in the VB IDE can be seen in
Figure 5. Connector and glue-type components still need
to be written by hand, but the effort required to implement
them is only a small part of the effort that would be required
to repackage the large number of filter-style programs with-
out an automated process.

Exemplar Application

To demonstrate the viability of our approach we have de-
signed and implemented a simple Gul-based spell-checker
based on a pipeline of ActiveX controls. Figure 6 de-
picts the uML component interaction diagram of the spell-
checker. The text to be spell-checked is retrieved from
the GuI edit box using a text box source glue component.
It is transformed into a list of words using the translate
component that is a direct equivalent of the Unix tr com-
mand. The word list is then transformed into a sorted list
of unique words using the sort and unique components that
correspond to the Unix sort and unig commands. Finally,
the sorted stream of words to be spell-checked and a dic-
tionary of all acceptable words are processed by common
— derived from the Unix comm command — that outputs
the errors: a list of words contained in the first stream and
not contained in the second one. This stream of misspelled
words is cloned into two streams using T the equivalent of
the Unix tee command. One stream is sent, using the list
box sink glue component, to a Gul list box. The other is
passed to the wordcount component to count the number of
words contained in it and then, via an edit box sink, to a GuI
text box. It is important to note that the integration of Gul
elements as parts of the pipeline and the cloning of a data
stream can not be implemented using the standard Unix lin-
ear pipeline system.

We implemented the Gul-based spelling checker using
VUFc following the design we outlined. The implementa-
tion consisted of:

¢ drawing the controls to form the spell check pipeline,
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e specifying (using the property editor of the IDE) the
operational parameters of each filter component (e.g.
that the wordcount filter should count lines),

e adding two lines of code: one for connecting the
“Check spelling” button to the co-ordinating control,
and one to specify an option to the fold filter that con-
tained an embedded newline and could not be specified
from the property editor.

The implementation and resultant user-interface are de-
picted in Figure 7. The visual components and their in-
terconnections need not be visible to the end-user; they are
included in the figure to demonstrate the pronounced sim-
ilarity between the design of the spelling checker and its
visual implementation.

Compared to a spelling checker implemented using a lin-
ear pipeline in the Unix environment, our component-based
implementation offers the following enhancements:

e it provides a graphical user-interface,

e it counts the number of errors detected utilising
VUFC’s ability to implement non-linear pipeline
topologies, and

e it can check formatted text.

In addition, the application was implemented using a typed
and modular language in a rich integrated development en-
vironment offering a purely graphical method for intercon-
necting the components, a syntax-aware editor, a sophisti-
cated debug facility, a graphical interface builder, integrated
help facilities, and source-code management. Third-party

tools also provide support for profiling, automated source
code examination, and browsing facilities. This level of
support is not existent in Unix-based shell-programming
approaches and very difficult to obtain in visual program-
ming environments implemented from scratch.

Approach Evaluation

The use of a gul-builder 1DE for visual programming com-
pared with the use of a dedicated visual programming editor
is a choice that depends on the balance of specific advan-
tages, disadvantages, and limitations of each approach.

Modern IDES provide a mature development environ-
ment that enhances programmer productivity in a number of
ways. As an example, Visual Basic provides a sophisticated
graphical editor, a rich mechanism for specifying compo-
nent properties (categorised by function, alphabetically, or
grouped on a form; all with two levels of help material), a
syntax-aware program editor (with keyword colouring, real-
time function argument prompting and checking, and mul-
tiple levels of undo), a debugger, and an integrated object
browser. In addition, programmers (including those relying
on visual programming components) profit from the facili-
ties provided for interacting with the environment. Specifi-
cally, environments based on Java 2 or Microsoft’s .net ar-
chitecture offer classes supporting most common Gul ele-
ments, database connectivity, major networking protocols,
email and HTTP transactions, multimedia data, localisation
and internationalisation, object serialisation, directory ser-
vices, and distributed computations.

Furthermore, major existing IDES benefit from a large in-



stalled user base that in turn results in programmer famil-
iarity with the environment, wide choice and availability
of supplementary documentation, professional magazines,
conference and exhibitions, consulting services, and train-
ing courses. The large user base has also resulted in the
blossoming of an add-on industry providing components
and tools. An illustrative case is Component Source — a
major commercial vendor of ActiveX components — that
provides over 2300 components in its January 2001 cD. In
addition many design, source code control, and testing tools
can be seamlessly integrated into mainstream IDES.

Finally, visual components targeting industry-standard
IDES can be crafted using existing rich component frame-
works and technologies. In our case we were able to use
Unix components already encapsulated in a com frame-
work and experiment with two different technologies for
creating ActiveX controls, one based on the C++ Active
Template Library (ATL), and one based on the ability of Vi-
sual Basic to create ActiveX controls.

However, the approach we propose is not without prob-
lems. The most important potential problem comes from
the clash with the underlying programming model sup-
ported by the I1DE (e.g. Visual Basic in our case) that can
make it difficult to express the semantics of the combined
system or reason about the resulting artefact. In the spe-
cific application we described, the data-flow paradigm of
the visual language is orthogonal to the native imperative
/ object-oriented paradigm supported by Visual Basic. Had
we developed visual programming components for express-
ing imperative constructs such as assignments and loops
the interactions between the two could potentially become
formidable sources of confusion.

In addition, the editor used for the Gui-design is not op-
timised for visual programming. As an example, compo-
nents with common semantic (as opposed to topological)
properties can not be selected and manipulated as a group
while maintaining their visual connections, nor does the ed-
itor provide a way to draw arbitrary lines between compo-
nents. At a deeper level, as the IDE is not designed for vi-
sual programming notions such as modularity, encapsula-
tion, and abstraction are not inherently available in a visual
form. They can sometimes be accommodated by utilising
GUI elements such as forms and frames, forcing however
an unnatural expression style. Similarly, the connection be-
tween visual elements located on different forms can not be
expressed in a visual way, but has to rely on textual repre-
sentations such as object name bindings.

Finally, the specific implementation we have demon-
strated (the visual design of Unix-style pipelines) has some
unique restrictions, that are not however limitations of the
approach we propose. The data passed between the com-
ponents consists of strings, while other visual program-
ming systems like Khoros/Cantata, AVS/Express, and Lab-
VIEW allow for complex structures to be passed between
components. Although in theory pipelines can be used to
pass binary data and complex structures, Unix systems cus-
tomarily pass records delimited by newlines and delimit

fields by whitespace or another special character. This prac-
tice is not overly restrictive: it has served admirably many
data processing tasks [36]; furthermore, more complex data
structures can always be expressed as character strings us-
ing XML. One additional restriction of our implementation
might appear to be the absence of feedback loops, again
a feature of the visual programming systems mentioned
above. While the topologies supported by our implemen-
tation can express loops, most Unix filters only accept a
single input source — a design choice influenced by the
more restrictive linear topology of the pipelines that can be
expressed in the common Unix shells — and can not there-
fore be easily connected into a loop structure.

Conclusions

We have demonstrated that standard Gul component tech-
nologies and environments can be used to support a visual
programming approach. We feel that this is a significant
result, because the relative slow-moving acceptance of vi-
sual programming techniques can be partly attributed to
the quality and functionality of the environments that sup-
port them. As many visual programming environments are
research-oriented, proof-of-concept projects, they can not
easily compete with the commercially-developed, polished,
and supported commercial IDEs. In contrast, visual pro-
gramming based on the reuse of proven existing compo-
nents in a widely adopted IDE levels the playing field and
allows research to focus on program representations and
methodologies that can increase productivity rather than
supporting infrastructure.

In the form implemented VUFC can be used for produc-
tion work, but can also be extended and improved in a num-
ber of ways. Currently the user is responsible for the cor-
rect layout of the visual components. An interesting en-
hancement would be the provision of a verification step af-
ter the pipeline plumbing phase to detect obvious errors in
port connections. This verification could be based on a type
system for component ports [37, 38] preferably providing
edit-time feedback using a static type inference system [39].
A related improvement concerns the topologies that can be
implemented. Some existing filters accept only files for in-
put and output and not arbitrary data streams. We are exper-
imenting with the use of named pipes to equip such filters
with connectable streams.

The most significant future work will however involve
the exploration and extension of the visual part of the func-
tionality. As an example, the operation of the pipeline at
runtime can be visualised by colouring the components to
indicate their level of activity. Such a facility can be used
for debugging or diagnostic purposes. In addition, more so-
phisticated connector components can be designed to pro-
vide greater expressive freedom to the visual designer. Pas-
sive connectors could be used to propagate port assignments
across non-rectangular regions, while split connectors could
be used for functionally dividing a complex design into



multiple forms in a manner analogous to the current prac-
tice in multi-sheet electronic circuit diagrams. Finally, the
application domain of our approach can be extended in a
number of directions; pipelines are not the only program-
ming artefact that can be efficiently expressed in a visual
way. Component deployment in distributed applications is
one obvious target; others surely exist and wait to be ex-
plored.
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