
A Modest Proposal for Curing the Public Field Phobia��

Diomidis Spinellis
Department of Management Science and Technology

Athens University of Economics and Business
Patision 76, GR-104 34 Athens, Greece

email: dds@aueb.gr

Abstract

Field accessor methods have become a ubiquitous feature
of object-oriented programming. The definition and use of
such methods promote code bloat and an unnatural expres-
sion style. We propose a simple addition to the C++ language
that can move the burden of providing abstraction support for
fields from the programmer to the compiler.

Keywords

Field; object accessor method; getter methods; overloading;
C++

1 Introduction

In the interest of abstraction, designers typically hide object
and class fields from modules outside the class by declaring
them as private [KM96, p. 37]. Subsequently, when writing
in C++ or Java, programmers create public accessor methods
[AG96, p. 40] for those fields with names such as SetField-
Name and GetFieldName. Finally, in the interest of efficiency,
the compiler (often nudged by the suitable application of the
inline C++ keyword) tries to optimise those method calls into
simple assignment or access operations. Some languages,
systems, and style guidelines have even formalised this prac-
tice and mandated it for the implementation of interoperable
components or for code conforming to specific standards.

In the following sections we outline problems associated
with this practice and propose a modest language extension
to support an alternative programming style.

�SIGPLAN Notices, 37(4):54–56, April 2002.
�Copyright c�2002 by the Association for Computing Machinery, Inc.

Permission to make digital or hard copies of part or all of this work for per-
sonal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, to republish, to post on servers, or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Publications Dept, ACM Inc., fax +1 (212) 869-0481, or
permissions@acm.org.

2 Problems

The practice of isolating all object fields by accessor methods
leads to code bloat and an unnatural expression style. Both
problems result in programs that are less readable and main-
tainable.

Consider a typical object definition:

class Point {
private:

double x; // X coordinate
double y; // Y coordinate

public:
// Return X coordinate
double
GetX(void)
{

return (x);
}

// Set X coordinate
void
SetX(double val)
{

x = val;
}
// ...

}

Some code style formatting conventions dictate at least 13
lines of code for every object field; the style followed by
the authors of Java would require 11 lines of code, while the
compact style found in the canonical C++ description [Str97]
would require two additional lines of code for every field.
In C++, to make the code available for efficient inline ex-
pansion, the code is placed in a program area with a very
high real-estate value: the class declaration. This is the place
where programmers will look to find a class’s interface and
contractual obligations. The class declaration is also the code
that will be included by all files that use this class. Regret-
tably, we populate this valuable real-estate with trivia that
both programmers and compilers could do without. In large,
carefully-crafted systems, the number of accessor methods
can be significant. As an example, Rose and Rose [RR00]

54



calculated that accessor methods used to obtain the value of a
field (getter methods) account for about one fourth of the to-
tal number of methods in the standard Java “java.*” package
source classes.

To add insult to injury, the definition of these accessor
methods, forces us to abandon the assignment and field ac-
cess syntax provided by the language in favour of less natural
forms of expression. Thus, instead of writing:

Point a;
a.x = a.y = 0;
screen.Moveto(a.x, a.y);

we have to write:

Point a;
a.SetX(0);
a.SetY(0);
screen.Moveto(a.GetX(), a.GetY());

Although in pure object-oriented languages, such as
Smalltalk, the use of messages for accessing and modify-
ing fields is natural, in languages supporting direct access to
fields, such as C++ and Java, accessor methods just hinder
code readability.

3 Proposal

The justification behind the creation of accessor methods—
a callisthenic ritual followed daily by thousands of
programmers—is abstraction. When a class directly exposes
its fields as public, programmers that use the class gain in-
sight into the class’s implementation details. Future imple-
mentation or interface changes will be difficult in a body of
code that contains specific references to fields. In our exam-
ple, if the implementation of the Point class changes to use
the polar notation, all direct references to x and y will have to
be changed to calls to suitable accessor methods. Similarly,
with public fields it is impossible to add some form of access
control to a field, e.g. the enforcement of read-only access.

We believe that the amount of code bloat and the unnatural
expression style that result from the definition and use of ac-
cessor methods justify a small language extension to provide
the accessor method functionality in a more friendly fashion.
A syntactic construct to express both a method and a field
access in the same way is available in Ada, Eiffel, and Mi-
crosoft’s C# [Lar01]. Components built around Microsoft’s
ActiveX technology [JGHJ96] also provide this functionality
in the form of set and get methods that are then transpar-
ently mapped to field access in languages such as Visual Ba-
sic. In addition, the proposal in reference [RR00] integrates
field access into the Java type system to eliminate the acces-
sor methods used to enforce read-only access.

We propose an addition to the C++ language definition that
transparently maps plain field access into accessor methods—
when such methods are provided; a similar change could also

be incorporated into Java when the language is extended to
support some form of operator overloading. With the change
we propose fields are typically created as public. When im-
plementation or interface changes dictate a different realisa-
tion, suitable accessor methods can be written to bind the new
implementation to the rest of the system without other code
modifications. In addition, object properties that are typically
accessed through a get/set interface can be made to appear as
fields promoting a more consistent expression style.

4 C++ Realisation

The syntax we propose for implementing the language-
supported accessor methods is based on overloading the .
(dot) operator to provide pseudo-fields (or pseudo-data mem-
bers in the C++ terminology). Pseudo-fields are field-like
entities that are not declared as fields, but are read or writ-
ten through language-supported accessor methods. Currently
the . operator can not be overloaded; the justification for
this is that the operator’s second argument is a name (an id-
expression) and not a value. For this reason the C++ oper-
ator overloading syntax needs to be slightly extended with
one additional operator consisting of a . followed by an id-
expression (the pseudo-field name):

operator-function-id:
operator operator
operator. id-expression

By the above definition the sequence operator.id-
expression is now a legitimate operator-function-id that can
be overloaded to create accessor methods for pseudo-fields.
Following the declaration of such accessor methods the
sequence .id-expression can be legitimately applied to a
postfix-expression as a shortcut for calling the accessor meth-
ods defined with the given operator-function-id name.

To provide read access to a given pseudo-field a of type
T a method with signature “T operator.a()” needs to be
defined; correspondingly for write access to the pseudo-field
a of type T a method with signature “T operator.a(T)”
must be defined. To enforce read-only access, the second
method is omitted; for write-only access the first method is
omitted, while the return type of the second method becomes
void. For reasons that have to do with the efficient implemen-
tation of pseudo-field pointers no other overloading based on
these method arguments is allowed. In the form they are given
they provide the default behaviour of a real object field.

Following these extensions we can define accessor meth-
ods for pseudo-fields as in the following example:

// Now defined in polar coordinates
class Point {
public:
// Public since we can define pseudo-fields

double angle;
double distance;

55



// Pseudo fields for Cartesian implementation
// x pseudo-field
double operator.x(double x); // Set
double operator.x(); // Get
// y pseudo-field
double operator.y(double y); // Set
double operator.y(); // Get

}

f()
{

Point a;
// Will map to (a).operator.x(0)
a.x = 0;
a.y = 0;
// Will map to (a).operator.x(), ...
screen.Moveto(a.x, a.y);
//...

The semantics and the implementation of the new accessor
methods are determined by performing the equivalent of the
following source-to-source transformation:

1. The sequence a.b appearing in an lvalue context as
a.b= c is transformed into

(a).operator.b(c)

2. The sequence a.b appearing in all other contexts is
transformed into

(a).operator.b()

Field access through an object pointer using the dereferenc-
ing (->) operator is performed by transforming the construct
a->b into the equivalent (*a).b. If the dereferencing op-
erator is overloaded, the respective function shall be called
before the above transformation takes place.

Pointers to fields can be accommodated at the expense of
an additional level of memory indirection for reading or writ-
ing field values through pointers. Since the same field pointer
can be used in both lvalue and other contexts, for a class
C, a pointer ap to a pseudo-field a of type T must provide
information for both accessor functions aget (pointer to T
operator.a()) and aset (pointer to T operator.a(T)).
In addition, the same pointer should also allow accessing
fields that do not have any defined accessor methods. This
second requirement can be trivially satisfied by having the
compiler internally generate the accessor methods needed
for all of the class’s � fields. A two-dimensional table
V[�][2] is then generated, with each row containing point-
ers to the respective field’s aget and aset methods. A pointer
to a field is the offset of that field’s accessor method point-
ers within the table. Every time a field is accessed through
that pointer as an lvalue, the pointer to aget is obtained from
the first table column; in all other cases the pointer to aset is
obtained from the second table column. Note that the field ac-
cess overhead is only incurred when fields of classes contain-

ing overloaded accessor methods are accessed through field
pointers.

5 Conclusions

Field accessor methods have become a ubiquitous feature of
object-oriented programming. The resulting code bloat and
unnatural expression style can be avoided without sacrificing
abstraction by overloading the . (dot) operator to provide
pseudo-fields. The syntax and semantics of such an extension
for C++ are relatively straightforward. An implementation
technique based on the use of a compile-time generated table
can be used to retain the semantics of field access through
pointers.

Acknowledgements

I wish to thank Sophia Drossopoulou and Sanjeev Sukumaran
for insightful comments on earlier approaches that led to-
wards the current proposal.

References

[AG96] Ken Arnold and James Gosling. The Java Pro-
gramming Languge. Addison-Wesley, 1996.

[JGHJ96] Stephen Jakab, Darren Gill, Alex Homer, and
Dave Jewell. Visual Basic 5.0 ActiveX Control
Creation. Microsoft Press, Redmond, Washing-
ton, USA, 1996.

[KM96] Andrew Koenig and Barbara Moo. Ruminations
on C++: A Decade of Programming Insight and
Experience. Addison-Wesley, 1996.

[Lar01] Graig Larman. Protected variaton: The impor-
tance of being closed. IEEE Software, 18(3):89–
91, May/June 2001.

[RR00] Eva Rose and Kristoffer Høgsbro Rose.
Java access protection through typing. In
S. Drossopoulou, S. Eisenbach, B. Jacobs,
G. T. Leavens, P. Müller, and A. Poetzsch-
Heffter, editors, Formal Techniques for Java
Programs, pages 136–142. Technical Re-
port 269, Fernuniversität Hagen, 2000. Avail-
able online http://www.informatik.fernuni-
hagen.de/pi5/publications.html.

[Str97] Bjarne Stroustrup. The C++ Programming Lan-
guage. Addison-Wesley, third edition, 1997.

56


