
100 Computer

I consider myself an above-average
programmer. Over the past 20 years,
I have written more than 100,000
lines of code in many different lan-
guages, operating systems, and plat-

forms. I progressed from Basic to Pascal,
with a short intermediate stint in assem-
bly language, and by the time I turned 16
I had begun learning C from a third-gen-
eration photocopy of The C Program-
ming Language (B. W. Kernighan and D.
M. Ritchie, Addison-Wesley, 1978), then
vented some misspent creativity on four
winning entries at the International
Obfuscated C Code Contest. Now, at 34,
I find myself humbly trying to improve
my coding and design skills by learning
new languages and programming ap-
proaches. About a month ago, I em-
barked on a project that first stalled, then
spun so badly out of control I doubted
that I would walk away from the crash I
knew would have to follow.

TAKEOFF
It all started when I began developing

a refactoring environment for C and C++
programmers, a project that involves
parsing and semantically analyzing C and
C++ source code. I based my first attempt
on the Purdue Compiler Construction
Toolset (PCCTS) and a complete C++
parser that John Lilley implemented atop
it. I thought that reusing code would save
me valuable time and effort—after all, I
teach my students that this is so.

However, the PCCTS’s 35,000 lines of
code quickly overwhelmed my cognitive
abilities. From gleaming the code and its
documentation I also learned that pars-
ing and analyzing C++ was a lot more
complicated than I expected, due to
namespaces, templates, classes, and their

interactions. So I also gave up on C++
and decided to concentrate on the much
simpler C. I quickly located a yacc gram-
mar and a lexical analyzer that Jutta
Degener, another above-average pro-
grammer, wrote in 1995.

Within a couple of hours, I could parse
some simple programs. Having a simple
grammar, I now needed a C preprocessor.
Here I must clarify that I could not build
on the code base of the GNU C compiler
because of the licensing restrictions it
places on work derived from its source
code. The Decus—DEC, now Compaq,

user group—C preprocessor appeared to
fit my requirements and, with some minor
arm-twisting, I persuaded it to compile in
my environment. Written before publica-
tion of the ANSI C standard in 1984, it
differed in some minor ways—such as the
implementation of the stringizing opera-
tor and token concatenation—from the
final ANSI standard.

More importantly, it reflected another
era’s programming style. Although the
code had abundant comments, meaning-
ful identifier names, clever algorithms, and
a structure that used many functions, the
preprocessor’s designers clearly did not
consider abstraction a priority. Most of its
functions communicated opaquely using
global variables, while the 3,800 lines of

code defined only two different C struc-
tures. In addition, many aspects of its oper-
ation were limited by fixed-size buffers
based on the minimum limits dictated by
the draft C standard—I can now appreci-
ate why standards specify such limits.

A BUMPY FLIGHT
At the time, I persisted with the Decus

code due to the difficulty of reimple-
menting the C preprocessor—a task that
proved to be increasingly daunting as I
examined the code that performed the
macro expansion. A few days later, I had
introduced enough of the ANSI C func-
tionality to preprocess the entire 31,000
nonempty lines of the Microsoft Win-
dows SDK windows.h header file, and
the files it includes, into a result almost
identical to what the Microsoft compiler
produced. Only then did I realize that the
lack of abstraction I had considered
quaint while adapting the source code to
handle ANSI C would make any further
progress toward integrating the pre-
processor with the rest of my system
practically impossible.

Spending a few more hours with the
PCCTS source code convinced me that it
was not a viable solution either. PCCTS
has classes for abstracting everything
except the specific functionality I needed
to modify. Returning to the drawing
board, I decided to implement the C pre-
processor from scratch. Naturally, I would
do it right: Although I do not consider
myself experienced in object-oriented
design nor an expert C++ programmer, I
saw that I could abstract the various pre-
processing phases—trigraph substitution,
newline elimination, tokenization, com-
mand processing, and macro expansion—
as separate classes linked together into a
serial stream. Moreover, to backtrack all

Fear of Coding, and
How to Reduce It
Diomidis Spinellis, Athens University of Economics and Business

T H E P R O F E S S I O N

Drawing on airline practices,
the author proposes coding
in pairs, with a senior
programmer guiding a
junior counterpart.

Continued on page 98

98 Computer

T h e P r o f e s s i o n
Continued from page 100

these classes I would need to fetch and
push back lexical items into their
upstream link. I could therefore embed
that common functionality into a super-
class. Being a cautious type, I decided to
completely implement a single class and
thereby test my design’s principles.

That’s when things started to get ugly.
The return type of the subclasses would
not match that of the superclass. Nor
could the class I intended to use as a stack
for frozen included files handle open files
gracefully. At the same time, I began to
feel uneasy because I was reimplement-
ing functionality already available, albeit
with additional baggage, as part of the
C++ standard template library.

ENGINE TROUBLE
I felt helplessly mired in a hopeless sit-

uation. I browsed a couple of design pat-
tern books in my library, but found
nothing concretely related to my prob-
lem. I could not ask any of my peers for
help as most had given up programming
long ago to pursue managerial positions
or academic interests. Although I know
many excellent programmers, most
would be too busy to help me in such a
task. I also felt that those who did have
time would not have enough experience
with the problems I faced.

Could it be that the problems con-
fronting me derived from the new prob-
lem domain and, by adopting a

trial-and-error approach, I could quickly
overcome them? I didn’t think so. When
programming in Pascal, C, Prolog, or
even assembly, I could gradually improve
my programming style by reading and
learning from code others had written. I
could also improve my older programs
piecewise by introducing new techniques
I had mastered, such as the use of struc-
tures, dynamic memory, abstraction,
recursion, and coding with type-safety
and portability in mind.

All these activities required a relatively
small learning investment and provided
immediate feedback on the suitability of
a particular approach. In this project,
however, I faced hard design choices,
brittle classes, and a feedback cycle that
would span weeks of hard work. The
prospect left me terrified.

HELP FROM ABOVE?
In desperation, I recalled my previous

academic appointment: It involved a
weekly commute between Athens and
Samos in the Aegean archipelago. As the

pilots negotiated the tricky Samos air-
port approach, they would deftly bank
the aircraft toward the airstrip, avoiding
the steep mountains that lay before it.
Sometimes, they would target their final
approach to the right of the runway, let-
ting the force 7 meltemi wind push them
toward the intended landing position.
From the open cockpit door I could
sometimes see the view from its window
rapidly change between sky, land, and
sea in response to the aircraft’s nervous
dance, while a pilot—often someone
younger than me—expertly handled the
dozens of buttons, knobs, levers, and
dials, safely bringing the huge airplane
to a stop.

During these flights, I would often
reflect that the pilot might be making
his initial flight with passengers aboard
or was perhaps making the difficult
approach to the Samos airport for the
first time. However, I was never worried
because, always, beside the young pilot
sat a much older copilot, one with hun-
dreds of hours of flight experience. This
veteran constantly monitored the ap-
proach, guiding his younger apprentice
yet ever ready to take the controls
should a serious problem arise.

SAFETY PROCEDURES
The airline industry has, over many

years, developed and refined procedures
and processes to establish a formidable

I could not ask any
of my peers for help

as most had given up
programming long ago.

Circulation: Computer (ISSN 0018-9162) is published monthly by the IEEE Computer
Society. IEEE Headquarters, Three Park Avenue, 17th Floor, New York, NY 10016-
5997; IEEE Computer Society Publications Office, 10662 Los Vaqueros Circle, PO
Box 3014, Los Alamitos, CA 90720-1314; voice +1 714 821 8380; fax +1 714 821 4010;
IEEE Computer Society Headquarters,1730 Massachusetts Ave. NW, Washington, DC
20036-1903. IEEE Computer Society membership includes $14 for subscription of
Computer magazine ($14 for students). Nonmember subscription rate available upon
request. Single-copy prices: members $10.00; nonmembers $20.00. This magazine is
also available in microfiche form.
Postmaster: Send undelivered copies and address changes to Computer, IEEE Service
Center, 445 Hoes Lane, Piscataway, NJ 08855. Periodicals Postage Paid at New York,
New York, and at additional mailing offices. Canadian GST #125634188. Canada Post
Publications Mail (Canadian Distribution) Agreement Number 0487910. Printed in
USA.
Editorial: Unless otherwise stated, bylined articles, as well as product and service
descriptions, reflect the author’s or firm’s opinion. Inclusion in Computer does not
necessarily constitute endorsement by the IEEE or the Computer Society. All
submissions are subject to editing for style, clarity, and space.

Innovative technology for computer professionals

Members
save
25%

on all conferences sponsored

by the IEEE Computer Society.

Not a member?

Join online today!

Members
save
25%

on all conferences sponsored

by the IEEE Computer Society.

Not a member?

Join online today!

computer.org/join/

August 2001 99

safety record. When reading the NTSB
accident reports or browsing airworthi-
ness directives, I am always impressed by
the safety culture that permeates the
drafting and handling of these docu-
ments. Had the software engineering
profession drawn upon this culture to
make its own products and processes
more sound, I may never have found
myself stranded in the wreckage of a
product I couldn’t code my way out of.

I doubt that we will ever see software
bug reports—even of safety-critical soft-
ware—handled with the same attention
that NTSB devotes to its accident reports,
or that we will see vendor patches installed
with the religious care bestowed on air-
worthiness directives. However, I do be-
lieve we could apply to software develop-
ment the concept of pairing an inexperi-
enced pilot with an experienced copilot.

EXPERIENCE IS MY COPILOT
Kent Beck, in his insightful book

eXtreme Programming Explained
(Addison-Wesley, 2000), espouses pair
programming and describes the many
advantages that derive from having pro-
grammers alternately code and help over-
see the coding with advice and design
assistance. Notice, however, that I never
flew to Samos with two 24-year-old
pilots at the controls. Inherent in the
pilot-and-copilot approach are experi-
ence, formalized training, and seniority.
Many software engineering researchers
and practitioners have expressed dismay
with the natural career evolution of expe-
rienced programmers, which forces them
to stop programming and manage new,
inexperienced programmers.

Imagine instead how our profession
would evolve if every programmer
always coprogrammed with a more ex-
perienced, senior counterpart. Estab-
lishing a seniority ladder would provide
incentives for senior programmers to
continue programming, thereby ensuring
that their juniors would benefit from
their experience. Just as a pilot fresh out
of school is not allowed to fly a com-
mercial airliner alone, a junior software
engineer should not develop software
critical to our society without having an
experienced peer by his or her side. Over
the years, the programmer will gain

reading professional magazines, journals,
books, and source code. Finally, I would
also be able to discuss my problems with
my peers who, looking forward to a
financially and professionally rewarding
career as senior programmers, would
hopefully still be programming.

Does such an approach make eco-
nomic sense? It could. Given that there
is a documented 10-to-1 difference be-
tween the productivity of the best and
worst programmers (H. Sackman, W.J.
Erikson, and E.E. Grant, “Exploratory
Experimental Studies Comparing Online
and Offline Programming Performance,”
Comm. ACM, Jan. 1968, pp. 3-11), any
approach that can cultivate or retain the
right sort of talent will make a positive
difference in a company’s bottom line. I
also believe that 15 years of intense men-
toring will yield professionals who
occupy the top side of the productivity
curve. Further, these professionals will be
much more likely to continue working as
senior programmers if such a career path
is open to them.

S etting up a system that pairs junior
programmers with senior mentors
presents a nontrivial challenge. To

meet it, we will need globally recognized
standards for certification and program-
ming experience and an official and
portable way to measure, recognize, and
remunerate “programming time”—our
industry’s equivalent of airline flight time.
We will also need to overcome the soft-
ware industry’s natural suspicion of a
practice that appears to increase the work-
force and salary pressures. Establishing
such a system, however, will be a sure sign
our profession has matured. ✸

Diomidis Spinellis is an assistant pro-
fessor in the Department of Management
Science and Technology at the Athens
University of Economics and Business.
Contact him at dds@aueb.gr.

enough “programming time” to stand by
the side of newer colleagues, who will in
turn benefit from the senior program-
mer’s experience.

In our profession, the rapidly chang-
ing technology will result in knowledge
flowing both ways: The junior pro-
grammer will undoubtedly brief the older
partner on the newest technologies, tools,
and fads. Lucy Berlin and Robin Jeffries
suggest a similar model, based on the
time-honored practice of apprenticeship
(“Consultants and Apprentices: Obser-
vations about Learning and Col-
laborative Problem Solving,” Proc. Com-
puter-Supported Cooperative Work,
ACM Press, New York, 1992, pp. 120-
137).

To avoid having this system degener-
ate into a travesty in which a seasoned
Cobol programmer attempts to oversee a
young Turk coding in Java, we must bor-
row an additional item from the airline
industry: type certification. Organizations
that choose to adopt this approach
should ensure that both members of the
programming pair are familiar at a basic
level with the technology they’re using,
be it SQL, C, Java, or Cobol. Further, the
senior member should have considerable
experience with that technology.

SMOOTHING A ROUGH LANDING
How would such an approach have

benefited my current plight? First, at age
34, I would still be able to count on the
advice of a senior and experienced pro-
grammer sitting by my side. Only the
fields of professional sports and software
engineering consider 30-year-olds to be
senior members.

Second, over the past 10 years I would
have received valuable practical mentor-
ing in programming, instead of trying to
filter the wheat from the chaff only by

Neville Holmes, School of Computing,
University of Tasmania, Locked Bag 1-359,
Launceston 7250; neville.holmes@
utas.edu.au

Imagine how our
profession would evolve

if every programmer
always coprogrammed

with a more experienced,
senior counterpart.

