
 

Java – The Evolutionary Attraction

 

1

 

INFORMATIK • INFORMATIQUE 2/2000

 

Distributed Object Bridges
and

Java-based Object Mediator

 

Konstantinos Raptis, Diomidis Spinellis, Sokratis Katsikas

 

An important aspect of research on software objects, components, and component-based applications con-
cerns their interoperation. Is their interoperation technically possible? Which elements are responsible for
the software objects’ incompatibility? Is compatibility a responsibility of the objects or of their underlying
architectures? In this article we discuss the object compatibility problems, we describe basic strategies for
bridging the gap between the three basic middleware remoting technologies (CORBA, DCOM, and RMI),
and present our approach for a Java-based Object Mediator architecture.

 

Introduction

 

The need to develop software based on existing code
rather than development from scratch, led to the emergence of
component-based software. Components are typically object-
oriented, or at least used as objects. Szyperski 

 

[Szyperski 98]

 

defines a software component as: “A unit of composition with
contractually specified interfaces and explicit context depend-
encies only that can be deployed independently and is subject
to third-party composition”.

Moreover, the need for interaction between the software
components led to the specification of middleware remoting
models. The Object Management Group’s Component Object
Request Broker Architecture (CORBA) [Object Management
Group 96], Microsoft’s Distributed Component Object Model
(DCOM) [Microsoft Corporation 98], and Sun Microsystems’
Remote Method Invocation (RMI) [Sun Microsystems 96] are
three models that enable software components from different
vendors, running on different machines, and on different
operating systems, to work together.

In order for developers to use a component as part of an
application, they must be able to distinguish its attributes. That
is, the component must be identified by meaningful character-
istics, which are: the component name, which provides the
developer with the ability to identify it, the component
interface, which identifies the operations fulfilled by the

component, and the component model which specifies the
semantics and context of the component.

When there is a need for two or more software components
based on different technologies to interoperate the mission
target is to make the components hide the fact that the other
components are functioning under a different technology with-
out changing their characteristics and behaviour. This task may
not always be possible due to technical or organizational
constraints. An exemplar case involves two Java objects, each
using the RMI and DCOM technologies respectively; the inter-
operation between them brings out the conflicts between the
Java virtual machine and Microsoft Java virtual machine. In the
last section of this article we present our research work on a
generic architecture that allows bridging an RMI-based client
application with a COM-based server application using the
Java programming language as the basis for building an
operational mediator.

As a component’s instance is typically an object and
anything applying to objects has also to apply to components,
in the next paragraphs our discussion will focus on software
objects. In the following section we present the compatibility
problems between the software objects and representative
attempts for bridging CORBA, DCOM and RMI technologies.

 

Object Incompatibility

 

For software objects to be able to interact with each other
they must comply with the rules of their underlying technology.
However, it is difficult, if not impossible, for two objects, host-
ed on different object architectures, to interact with each other.
The incompatibility reasons stem from the differences of the
underlying models and the way they present and use the soft-
ware objects. We discern three basic incompatibility points.
• Different Interface Approaches and Implementations: One

of the basic elements of an object is its interfaces. Through
their interfaces objects expose their functionality. An inter-
face consists of a description of a group of possible opera-
tions which a client can ask from an object. A client interacts

1

2

Konstantinos Raptis is a PhD student in the Department of In-
formation and Communication Systems at the University of the
Aegean. His research interests include distributed applications,
software component models and distributed component interop-
eration technologies. Contact him at krap@aegean.gr.

Diomidis Spinellis is an assistant professor at the Department
of Information and Communication Systems at the University of
the Aegean. Contact him at dspin@aegean.gr.

Sokratis Katsikas is a professor at the Department of Mathe-
matics at the University of the Aegean. Contact him at
ska@aegean.gr.



 

Java – The Evolutionary Attraction

 

INFORMATIK • INFORMATIQUE 2/2000

 

2

 

only with the interfaces of an object, never with the object
itself. Interfaces allow objects to appear as black boxes.
Different approaches and implementations of objects’ inter-
faces make them invisible to clients of other technologies.

• Different Object References and Storage: When a client
wishes to interact with an object it must first retrieve infor-
mation on the object’s interface. A client’s underlying
technology must recognize an object’s name, it must know
where to look, and how to retrieve its information, i.e. it
must know how the required object’s technology stores its
information. If a client’s technology does not have that kind
of ability then it is impossible for the necessary information
of the needed object to be found.

• Different Protocols: Another basic element in distributed
object interactions is the protocols used for the data trans-
mission. By the term protocol we do not mean only the
transport-level protocol, such as TCP/IP but include the
presentation and session level protocol which the Request
Brokers (RBs) support. The transport-level protocol is
responsible for the transmission of the data to the end point.
The presentation and session level protocols are responsible
for the formatting of the data transmitted from a client to an
object, and vice versa, between different RBs. According to
Geraghty et al. [Geraghty et al. 99]: “Although the client and
server may speak the same protocol, it is critical that they
speak the same language, or higher-level protocol”.

Table 1 presents the basic differences of the three models in
relation with the above incompatibility points.

The differences presented in table 1, are not the only ones
between these three architectures and the only reasons for
objects’ incompatibility. If we made a detailed comparison
between these models we would see many more differences
and we could find many more reasons. The differences, we
described, are the prime causes. As we will see in the next
paragraphs all attempts that have been made for bridging these
object middleware architectures focus their attention on these
points.

 

Bridging the Gap

 

Nowadays, discourse about software objects, compo-
nents, and component-based applications is about ActiveX
controls, JavaBeans (JBs), Microsoft Transaction Server
(MTS), and Enterprise JavaBeans (EJBs) and how they can
interoperate with each other. The common point is that all the
above are software component models, i.e. not all of them are
independent models; they all depend on the underlying archi-
tecture that each has as a basis for its construction.

In the next paragraphs of this section we provide some of the
attempts that have been done for bridging CORBA, DCOM,
and RMI, the most widespread commercial middleware
remoting technologies.

 

CORBA-DCOM Bridge

 

CORBA and DCOM, as an extension of COM, are the two
most important middleware remoting technologies. Their
importance stems from their ancestry. CORBA is a child of the
Object Management Group an association including Sun
Microsystems, Compaq, Hewlett-Packard, IONA, Microsoft
and others, while DCOM comes from Microsoft which enjoys
the highest share in the desktop operating system market.
Although COM and its extension DCOM are built-in in Micro-
soft’s OSs and there are no other providers of these technolo-
gies, the widespread adoption of Microsoft’s OSs and the de-
velopment of programming languages which support rich
COM/DCOM frameworks, led to the production of many
components based on Microsoft’s architecture. On the other
side, the fact that the OMG provides CORBA as specifications
for ORBs, instead of a product, led many companies to create
their own CORBA compliant request brokers, providing the
developers and the users with a range of ORBs capable of
satisfying various demands.

The OMG, understanding the need for bridging their differ-
ences, and after the first OLE/CORBA bridge from IONA
Technologies in 1995, decided to include as part of its updated
revision 2.0 of CORBA architecture and specification the Inter-
working Architecture, which is the specification for bridging
OLE/COM and CORBA. The Interworking Architecture ad-

dresses three points:
• Interface Mapping. As both models

use IDLs to define the interfaces
and as any object is exposed by its
interface, there must be a mapping
between them in order for a
CORBA object to be viewed as a
COM object and vice versa. In
particular, the OMG specifies four
distinct mappings: CORBA/COM,
CORBA/OLE Automation, COM/
CORBA, and OLE Automa-
tion/CORBA mapping.

• Interface Composition Mapping.
One of the basic differences
between CORBA and COM inter-
faces is the characteristic of inher-
itance. While CORBA supports a

3

Incompatibility
Points CORBA DCOM RMI

Interface Approaches 
& Implementations IDL MIDL Java

Object Identification 
Identification through 
Object and Interface 
Names

Identification through a 
GUID (CLSID & IID)

Identification through a 
URL-based Object 
Name and Interface 
Name

Object Reference Reference through an 
Object Reference (OR)

Reference through an 
Interface Pointer

Reference through a 
URL-based Object 
Reference

Object Storage
Storage in 
Implementation 
Repository

Storage in Registry Storage in rmiregistry

Protocols GIOP/IIOP/ESIOP Object RPC (ORPC) JRMP/IIOP

Table 1:  CORBA/DCOM/RMI basic differences in relation with incompatibility points.



 

Java – The Evolutionary Attraction

 

3

 

INFORMATIK • INFORMATIQUE 2/2000

 

multiple interface inheritance, COM provides only single
inheritance. In order for the bridge to be successful there
must be a map from CORBA’s multiple inheritance to
COM’s single inheritance and vice versa.

• Identity Mapping. This specification is concerned with the
mapping between the different Interface IDs that are used by
CORBA and COM.

The OMG does not provide an implementation of a
COM/CORBA bridge but only specifications. The implemen-
tation task has been left to commercial companies which have
released many bridge tools compliant with OMG’s specifica-
tion. Some of these products are PeerLogic’s COM2CORBA,
IONA’s OrbixCOMet Desktop, and Visual Edge’s Object-
Bridge. All the above products realize one of the interface map-
pings that OMG specifies. Their main goal is to provide a two-
way interworking between COM and CORBA applications.

 

RMI-CORBA Bridge

 

The widespread deployment of the Java language, and its use
in the development of Web-based applications in combination
with the presence of CORBA as a mature middleware technol-
ogy, quickly led to the combination of these two. As a first step
Java was included in the languages with mappings to OMG
IDL. Although Sun provided its own model for remote Java-
object interactions, the Java Remote Method Protocol (RMI),
the effective combination of Java language with the CORBA
architecture led OMG and Sun to consider the marriage of RMI
with CORBA. According to Sun [Sun Microsystems 97] Java
developers would be able to use RMI-based Java objects and
interoperate with CORBA-based remote objects. In June of
1999, Sun and IBM announced the release of the RMI architec-
ture over the IIOP protocol. According to RMI-IIOP any RMI-
based object can be accessed by a CORBA one and vice versa.
In order for this goal to be achieved, OMG has adopted two
standards for Object By Value and the Java-to-IDL mapping.
Moreover Sun made some changes in RMI to work under the
new requirements. 

Apart from the adoption of IIOP as RMI’s alternative proto-
col, a new version of the rmic compiler has been developed in
order to generate IIOP stubs/ties and IDL interfaces. Further-
more, the use of new commands and tools, for example for
naming and storing in the registry the RMI-objects and for
ORB activation, is required in order for the RMI-IIOP-based
objects to be accessed by the corresponding CORBA-based
ones.

 

DCOM-RMI Bridge

 

No special work has been done for bridging COM/DCOM
with RMI. In this field the attention is focused on the attempts
at integrating Java language and COM and on the bridging of
JavaBeans with ActiveX.

Microsoft supports COM/DCOM under its own edition of
the Java language. In order for users of the native Java language
to use the COM technology, Microsoft supports the Microsoft
Virtual Machine (MSVM). According to Microsoft [Microsoft
Corporation 99], the MSVM provides all the mechanisms

required for a Java object to be viewed like a COM object and
for a COM object to be accessible like a Java object.

As for bridging JavaBeans and ActiveX, a number of compa-
nies, including Microsoft and Sun, provide bridges for Java-
Beans and ActiveX components to interoperate with each other,
taking advantage of the JavaBeans architecture’s flexibility in
connection with protocol usage. Moreover, a lot of the work
concerns the possibility of using a JavaBean component in an
ActiveX-component based environment like Microsoft Office
or Visual Basic.

 

Java-based Object Mediator

 

We have approached the bridging of the three middleware
remoting technologies under a different view from those we
have described. Our intention was to exploit the Java language,
its capability to run irrespective of the operating environment
and its acceptance by all the three technologies, as a tool for the
creation of a mediator mechanism for bridging all the three
technologies together. We are using the Java language as a
“general-purpose object glue”. Our target was to allow a server
object, which may be CORBA, DCOM, or RMI compliant, to
expose its methods to CORBA-, DCOM-, and RMI-based
clients. In the next paragraphs we will present an example of
our approach involving bridging an RMI-client with a COM-
server.

The tools we were using in our research include:
• The Sun Microsystems’ Java Development Kit, version 1.2

(JDK 1.2, Java 2 Platform [Java 2 Platform 97]).
• The Object-Oriented Concepts’ CORBA compliant ORB,

ORBacus for C++ and Java, version 3.1.1 [ORBacus 99].
•  Microsoft’s Software Development Kit for Java, version 3.2

(SDK for Java 3.2 [Microsoft Software Development 99]).
•  Microsoft’s Virtual Machine (Microsoft VM) build 3188

[Microsoft Virtual Machine 99].
Moreover, the resulting programs can operate under the

Microsoft’s Windows 98 operating system.
Our intention was to enable an RMI-client program to

request methods exposed by a COM-server. Before proceeding
with the bridge of the RMI-client with the COM-server we had
successfully bridged an RMI-client with a CORBA-server and
a CORBA-client with a COM-server by developing a mediator
program using the Java language. We will briefly discuss the
way we have bridged the RMI-client with the CORBA-server.
The bridge between CORBA-client and COM-server follows
the same architecture.

We first developed in Java a CORBA-server application,
which exposed some methods through its IDL interface. When
running the server application, it can receive calls from a
CORBA-client application. We then created an RMI-based
client/server application where the server exposed, through an
RMI-interface, the same methods as the CORBA-server.

In the RMI-server application we added all the necessary
attributes to make it act like a CORBA-client application in
parallel with its action as an RMI-server. When the RMI-server
receives the RMI-client’s request, instead of implementing the
requested methods, it actually forwards the request, as a
CORBA-client, to the CORBA-server application. The

4



 

Java – The Evolutionary Attraction

 

INFORMATIK • INFORMATIQUE 2/2000

 

4

 

CORBA-server application then responds to the virtual
CORBA-client which then acts like an RMI-server and for-
wards the response to the RMI-client application. Figure 1
presents the class diagram of this RMI-client / CORBA-server
interaction.

In the same way we developed another Java mediator allow-
ing a CORBA-client application to request methods exposed by
a COM-server application. In this interaction our mediator had
to satisfy the demands of a CORBA-server application in
parallel with the demands of a COM-client application.

When one tries bridge an RMI-client application directly
with a COM-server application it is impossible for a mediator
to function as an RMI-server application and as a COM-client
simultaneously. Although we had no errors during compila-
tions, we could not get our mediator, at the run time, to imple-
ment simultaneously the appropriate classes of JDK’s java.rmi
package and Microsoft’s VM @com directives through which
a Java object may be presented as a COM object.

For the interaction between the RMI-client application and
the COM-server application to succeed, we used the previous
two mediators for bridging RMI-client with CORBA-server
(mediator A) and CORBA-client with COM-server (mediator
B). Thus, the RMI-client’s request was forwarded to the COM-
server through mediator A and mediator B. Similarly, the RMI-
client receives the COM-server’s response through mediator B
and mediator A.

From the above discussion it is obvious that in order for the
mediator to function properly two basic rules must be followed:
1. The mediator must comply with the client- and server-side

architectures. That is, the mediator must have a double role.
It must act like one architecture’s server application and like
the other architecture’s client application.

2. The environment where the mediator is hosted must support
all the necessary technologies. That is, for the mediator to
operate properly in its double role its environment must sup-
port simultaneously, at run time, the different architectures.

When trying to bridge directly the RMI-client with the
COM-server the second rule could not be satisfied because of
conflicts between the Sun and Microsoft Java editions in
relation to the support of the RMI and COM technologies.

Except for the above two rules our mediator does not have to
support the three incompatibility points we presented in the
second section. That is, the different interface approaches and
implementations, the different object references and storage,
and the different protocols. This goal was achieved by using the

Java programming language and our mediator architecture in
order to construct our system. We overcame these points of
incompatibility by using the Java programming language,
which is supported by all the three technologies, and by the
mediator’s architecture, which includes the attributes of all the
interacting technologies.

The fact that we were using the Java language to construct
our mediator provided us the advantage that the attributes of
our mediators would be understandable through the mapping
between the Java language and the different interface definition
languages. The architecture of our mediators gave us the ability
to name and store the mediator object according to the princi-
ples of the client’s technology, in parallel with searching and
retrieving the server object according to the principles of the
server’s technology. In the same way the mediator’s architec-
ture allowed us to use the client’s technology protocol in the
client-mediator interaction and the server’s technology
protocol in the mediator-server interaction.

 

Conclusions

 

The interoperation between different technology objects
is in practice much more complex and difficult than in theory.
Although many attempts have been undertaken to bridge the
gap between the objects’ underlying architectures, they are not
enough at the time to provide true vendor-, language-, and tech-
nology-independent interoperation between different software
objects. Unfortunately, until now the use of a single middle-
ware product has been the most reliable solution. Compatibility
problems between different vendors’ products persist even if
the products are compliant with the same technology [Charles
99]. Even for the bridge tools available their “fully compliant”
statements often refer to a selection of a single vendor’s which
does not support the vendor’s independence theory.

Our research concerns the development of an architecture
capable of providing an independent context for building
mediators capable of integrating multi-technology distributed
objects. We are using the Java language as the programming
tool for the creation of a mediator mechanism. We are using the
language as a “general-purpose object glue”. The results of our
work until now, have proven that the integration of different
middleware remoting technologies is possible.

Up to now our architecture allows the interoperation between
an RMI-client and a CORBA-server, a CORBA-client and an
RMI-server, a CORBA-client and a COM-server, and an RMI-
client and a COM-server. Our interoperation between RMI and

5

RMI-Client

- Attributes1 RMIclient

Java Mediator

- Attributes0 RMIserver
- Attributes1 CORBAclient

+ methodX0

CORBA-server

- Attributes0 CORBAserver

+ methodX0
– methodY0

Requests

Responses

Interface RMI
Interface CORBA

 
Requests
 

Responses
 

Fig. 1:

 

 Class diagram of RMI-client / CORBA-server interaction.



 

Java – The Evolutionary Attraction

 

5

 

INFORMATIK • INFORMATIQUE 2/2000

 

CORBA does not depend on the support of the IIOP protocol
in the RMI architecture. In the future we plan to complete the
circle of the interoperations between the RMI, the CORBA and
the COM technologies. Moreover, we plan to create a tool
through which a developer will automatically create the
necessary mediator mechanism. The integration and the appli-
cation of the Java Object Mediator can provide truly vendor-,
language-, and technology-independent interoperation
between different software objects.

 

References

 

[Charles 99]
John Charles, “Middleware Moves to the Forefront”, IEEE
Computer, Vol. 32, No 5, pp. 17-19, May 1999.

[Geraghty et al. 99]
Ronan Geraghty, Sean Joyce, Tom Moriarty, and Gary Noone,
“COM-CORBA Interoperability”, Prentice-Hall, Inc., 1999.

[Java 2 Platform 97]
“Java 2 Platform, Standard Edition”, Sun Microsystems, Inc.,
Mountain View, California USA, June 26, 1997. 
Available on-line: http://java.sun.com/j2se/, November 1999.

[Microsoft Corporation 98]
Microsoft Corporation, “DCOM Architecture, White Paper”,
Microsoft Corporation, Redmond WA USA, 1998.

[Microsoft Corporation 99]
Microsoft Corporation, “Integrating Java and COM, A Technolo-
gy Overview”, Microsoft Corporation, Redmond WA USA, Jan-
uary 1999.

[Microsoft Software Development 99]
“Microsoft Software Development Kit for Java 3.2", Microsoft

Corporation, Redmond WA USA. 
Available on-line: http://www.microsoft.com/java/sdk/32/,
November 1999.

[Microsoft Virtual Machine 99]
“Microsoft Virtual Machine build 3188", Microsoft Corporation,
Redmond WA USA. 
Available on-line: http://www.microsoft.com/java/vm/dl_vm32.
htm, November 1999.

[Object Management Group 96]
Object Management Group, Inc., “The Common Object Request
Broker: Architecture and Specification”, Revision 2.0 (Updated),
Object Management Group, Inc., July 1996.

[ORBacus 99]
“ORBacus for C++ and Java”, Object Oriented Concepts, Inc.,
Billerica Ma USA. 
Available on-line: http://www.ooc.com/ob/, November 1999.

[Sun Microsystems 96]
Sun Microsystems, Inc., “Java Remote Method Invocation
Specification”, Beta Draft Revision 1.2, Sun Microsystems, Inc.,
Mountain View, California USA, December, 1996.

[Sun Microsystems 97]
Sun Microsystems, Inc., “Java-Based Distributed Computing,
RMI and IIOP in Java”, Sun Microsystems, Inc., Mountain View,
California USA, June 26, 1997.
Available on-line: http://www.javasoft.com/pr/1997/june/state-
ment 970626-01.html, September 1999.

[Szyperski 98]
Clemens Szyperski, “Component Software: Beyond Object-
Oriented Programming”, Addison-Wesley Publishing Company,
Inc., 1998.


