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The integrity verification of a device’s controlling software is an important aspect of many
emerging information appliances. We propose the use of reflection, whereby the software is
able to examine its own operation, in conjunction with cryptographic hashes as a basis for
developing a suitable software verification protocol. For more demanding applications meta-
reflective techniques can be used to thwart attacks based on device emulation strategies. We
demonstrate how our approach can be used to increase the security of mobile phones, devices
for the delivery of digital content, and smartcards.
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1. INTRODUCTION
Information appliances and other devices with embedded software are
becoming ever more sophisticated and widely used [Halla 1998]; increas-
ingly in situations where their integrity is a prime concern. The complexity
of their software and the rapidly evolving environment often mandate a
field programming feature. Using this feature the owner or manufacturer
can rapidly fix problems found after the product has left the factory, or
even introduce new features.

Devices fitting the above description include mobile phones [Cummings
and Heath 1999], pay-TV interfaces, sophisticated set-top boxes such as
Web-TVs, credit card terminals, automatic teller machines, smart cards,
routers, firewalls network computers, satellites, and space probes. As these
devices often operate in a domain not fully controlled by the software’s
stakeholders their software can be compromised. An adversary might want
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to modify a device’s software in order to avoid billing, bypass the device’s
anti-theft measures or intellectual property protection mechanisms, or
implant a surveillance or denial of service device (Trojan horse). A mecha-
nism is therefore needed to remotely verify the integrity of a device’s
controlling software.

In the following sections we will describe the problem, propose a solution
based on software reflection, and outline some applications of our approach.
The remainder of this paper is structured as follows: Section 2 outlines the
problem we are addressing and the underlying assumptions; Section 3
describes the reflection-based solution strategy; Section 4 contains an
analysis of our approach’s vulnerabilities, while Section 5 provides exam-
ples of possible applications. In Section 6 we outline work related to our
approach, and Section 7 concludes the paper with an assessment of the
approach’s contribution.

2. THE PROBLEM

The problem concerns the integrity verification of a device’s controlling
software. For risk analysis purposes we assume that the assets that are to
be protected and the respective threats are those associated with consumer
goods and services.

2.1 An Exemplar Threat

The global system for mobile communications (GSM), apart from the mobile
subscriber identification and privacy security, provides functionality to
secure the mobile terminal equipment (e.g. mobile phones) against theft.
Each GSM terminal is identified by a unique International Mobile Equip-
ment Identity (IMEI) number [Mouly and Pautet 1992]. A list of IMEIs in the
network is stored in the Equipment Identity Register (EIR). The status
returned in response to an IMEI query to the EIR is one of the following:

White-listed: The terminal is allowed to connect to the network.

Grey-listed: The terminal is under observation from the network for
possible problems.

Black-listed: The terminal has either been reported stolen, or is not type
approved (as the correct type of terminal for a GSM network). The
terminal is not allowed to connect to the network.

A widely used mobile phone stores the IMEI number in an EEPROM (read-only
memory that can be electrically reprogrammed). The phone also provides a
“debug mode” which is accessed by setting an external connector pin to a
high voltage and sending a specific command sequence through the phone’s
serial interface. The debug mode allows the programming of all the EEPROM

contents, including the control software and the location used to store the
IMEI number. Reportedly, as a security measure, the phone’s software
detects alterations to the IMEI number and resets all transceiver calibration
data rendering the phone unusable. However, since all the phone’s program
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and data memory is field programmable using the phone’s serial interface,
a sophisticated thief could reprogram a stolen phone with software that did
not perform the IMEI security checks and a new IMEI.

2.2 Definitions

Our problem can be formulated around the following entities:

Client: The client is a software-controlled field-programmable device
whose software integrity the software stakeholder wishes to protect.
Examples of such clients are the devices outlined in Section 1.

Software Stakeholder: The software stakeholder is an entity which has a
business, legal, or regulatory interest in protecting the software’s integ-
rity. Examples of software stakeholders are the GSM operators, the
owners of communication satellites, or the operators of pay-per-view
systems.

Server: The server is a secure computer system under the control of the
software stakeholder. The server can communicate with the client using
a suitable communication protocol such as the remote procedure call.

Adversary: The adversary is an entity which has an interest in modifying
the client’s controlling software against the software stakeholder’s will.

2.3 Assumptions

The approach we propose is meaningful when the entities we described
operate within a framework of specific assumptions. These assumptions,
although they cannot be guaranteed, are realistic under a risk-analysis
view [Pfleeger 1996, p.15]: they hold true for a wide set of typical assets
that are to be protected and associated threats. Examples of such typical
asset-threat pairs include the illegitimate operation of a mobile phone by a
well-connected street criminal, or the unauthorized viewing of a pay-per-
view movie by a computer science student.

Assumption 1. The adversary can reverse engineer the client’s software
and hardware. We assume that the client’s software, including software
that controls the software upload session, is stored in unprotected memory
devices that can be read, reverse engineered, and modified. This assump-
tion is typically valid due to cost restrictions imposed by tamper-resistant
hardware and the low cost associated with modifying many firmware
storage technologies such as EEPROMs, flash ROMs, and CD-ROMs.

Assumption 2. The adversary can modify the client’s software at will. As
we will explain in Section 3.1.1 it is not feasible to protect the client’s
upgrade procedure when Assumption 1 holds true.

Assumption 3. The adversary cannot modify or substitute the client’s
hardware. Under the risk analysis regime we outlined, the cost of this
operation would be prohibitive compared to the potential benefits.
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Assumption 4. The adversary cannot mount a man in the middle attack.
This mode of attack is often difficult and costly; its cost is comparable to
that of the hardware substitution (Assumption 3). In addition, if such an
attack is mounted, the integrity of the client’s software will be the least of
the software stakeholder’s concerns.

Assumption 5. The effective entropy of the machine representation of
the client’s functioning software is for practical purposes equal to the
device’s available storage. This assumption means that the client is not
allowed to contain empty or low-entropy memory contents. To realize this
assumption, empty memory can be filled with random data. In addition,
low entropy memory contents can be compressed to increase their entropy.
For cases where this approach is not feasible, we outline an extension to
our approach in Section 3.3, which obviates the need for this assumption.

3. SOLUTION STRATEGY

A number of solutions to the problem we outlined turn out to offer
relatively weak protection or be infeasible in practice. In the following
paragraphs we briefly outline these approaches because each one of them
contains a part of the solution we propose.

3.1 Non-Solutions

3.1.1 Programming Authentication. Protecting the client’s software in-
tegrity from unauthorized modification can be viewed as a standard access
control problem solved through a suitable identification and authentication
(I&A) service. I&A is the twofold process of first identifying an entity and
then validating the identity of this entity. In order to implement an
authentication mechanism, one must determine what information will be
used to validate the potential user. Whatever that information is, it can be
described by one or more of the following categories:

—secret information (something the user knows),

—possession of a device (something the user has),

—biometrics (something the user is), or

—location-based authentication (somewhere the user is).

Thus, the client could implement an I&A protocol for the software upgrade
disallowing unauthorized software modifications. Unfortunately, since the
adversary can reverse-engineer the client’s software, he can also reverse
engineer the client’s authentication protocol and keys, and consequently
obtain access to the software modification functionality.

3.1.2 Code Checksum. One other approach could involve the calculation
of a checksum of all the client’s program memory contents. The server could
then periodically query the client for that checksum and verify it against a
locally stored copy. The obvious weakness of this approach is that rogue
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software uploaded to the client by the adversary could implement a dummy
version of the checksum function that would send back the checksum of the
original software.

3.1.3 Code Transfer. Although the adversary could implement a dummy
checksum calculation function, it would be impossible for him to store a
complete copy of the original software in conjunction with the modified
version due to the constraint imposed by Assumption 5. The server could
therefore verify the client’s software integrity by requesting the client to
transmit a copy of its operating software. The problem of this approach is
the bandwidth required to implement it. Many clients communicate over a
low bandwidth channel, yet contain a large amount of controlling software.
Transmitting a copy of the software to verify its integrity could consume
large amounts of time over a potentially costly communications medium.

Our approach is based on a synthesis of the last two solution attempts
described above.

3.2 Reflection-Based Verification

Our solution is based on having the client’s software respond to queries
about itself. The theoretical basis for this course is reflection. The founda-
tion for the concept of reflection is Smith’s reflection hypothesis [Smith
1982]:

“In as much as a computational process can be constructed to reason about an
external world in virtue of comprising an ingredient process (interpreter)
formally manipulating representations of that world, so too a computational
process could be made to reason about itself in virtue of comprising an
ingredient process (interpreter) formally manipulating representations of its
own operations and structures.”

Based on this hypothesis, reflective programs can access, reason about, or
alter their interpretation.

An important property of reflection is the casual connection between the
system’s internal structures and the domain they represent [Maes 1987]. It
is this property of reflection—that requires the connection to internal
structures and the represented domain to be behavioral rather than just
functional—that we exploit to provide an authentication mechanism. Spe-
cifically, we reason that the internal representations of a system can be
used to authenticate its external, functional properties.

Although the semantics of reflection in programming languages are often
complicated, our requirements are modest and can in most cases be
satisfied as a normal part of the system’s implementation, i.e., without
imposing special needs on the implementation language or environment.
For our application it is sufficient to amend the client’s program with the
ability to access its own internal, machine-code representation. Thus, the
theory-relative self-knowledge implied by reflection boils down in our case
to read-only access of the program’s internal representation. If the client’s
program and its associated data are stored in memory locations @0 2 L#,

Reflection as a Mechanism for Software Integrity Verification • 55

ACM Transactions on Information and System Security, Vol. 3, No. 1, February 2000.



the program needs to be able to bind the name of a memory location M with
the value of its contents V and obtain that value. The viability of this
operation is a consequence of a shared code-data (von Neumann) architec-
ture and made possible in languages that support the use of unrestricted
pointers such as C and C11. At a higher level, access to an application’s
code memory can be supported through operating system abstractions such
as system calls or special block device files [Yokote 1992]. In order to be
able to verify the integrity of the device’s software, stakeholder Bob (B)
amends the protocol the serve uses to communicate with the client device
(D) by adding the the following message:

B 3 D : H~S, E! (1)

This message requests from the device to compute and send back a
cryptographic hash [Pieprzyk and Sadeghiyan 1993] (message digest) such
as RIPEMD-160 [Dobbertin et al. 1996] of its program storage locations
ranging from S to E. When the device receives this message it responds
with the tuple:

D 3 B : ~V, H~V, S, E!! (2)

which contains its operating program version V and the computed hash
value H for that given version. In order to verify the integrity of the
device’s software, B needs to choose two random integers M1 and M2 that
satisfy the following condition:

0 # M2 # M1 # L (3)

The following message exchange will then take place:

B 3 D : H~0, M1! (4)

D 3 B : ~V, H~V, 0, M1!! (5)

B 3 D : H~M2, L! (6)

D 3 B : ~V, H~V, M2, L!! (7)

B will then retrieve from the server’s secure database a copy of the same
software version VL, calculate the corresponding hash values, and compare
them against the values sent by D:

H~VL, 0, M1! 5? H~V, 0, M1! (8)

H~VL, M2, L! 5? H~V, M2, L! (9)
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If the two values do not match, B knows that the software has been
tampered with and can refuse service to that device, or reprogram it with
the correct software.

The verification procedure we outlined overcomes the problems described
in Section 3.1. Specifically, unauthorized software modifications of any part
of the software, including the part that implements the verification proto-
col, will be detected, as the modified software will be covered by the input
range of at least one of the two hash functions and the respective function
will yield a result different from the one calculated by the server on the
original software. In addition, as the two positions used to delimit the
ranges of the hash functions are specified dynamically as random integers
during the protocol operation, the rogue software cannot precalculate and
store all possible responses to the hash value query message 1; storage
availability for storing the precalculated values is restricted by Assumption
5. Finally, the amount of information transferred using the outlined
protocol (messages 4–7) is modest, totaling less than 64 bytes in both
directions for a 160 bit hash function; it is therefore practical to implement
it even over low bandwidth channels.

The hash function used for evaluating the return value should be a
cryptographicaly secure function such as RIPEMD-160. For a given program
version V and a program of length L 1 1 this function maps the 2~L 1 1!
different ~S, E! tuples that can be requested by B onto the corresponding
hash values. The properties of this function should preclude its emulation
by any implementation other than one that has access to the original
program code.

As M2 # M1 the hashes computed will span over the entire program
storage locations of D. With RIPEMD-160, hash function implementations
computing hashes at 19.3 Mbit/s (portable C implementation) up to 39.9
Mbit/s (hand-tuned x86 assembly) on 90 MHz Pentium machines
[Bosselaers et al. 1996]. The performance of our approach is within the
practical limits of both high-end (e.g. 2Mbyte ROM 100MHz processor
information appliances) and low-end (e.g. 20Kbyte ROM 10MHz processor
smartcards) hardware.

3.3 Meta-Reflective Extension

Our Assumption 5 specifies that the effective entropy of the machine
representation of the client’s functioning software is for practical purposes
equal to the device’s available storage. This assumption is not always easy
to satisfy in practice. Physical memory contents are typically of low entropy
and thus compressible [Douglas 1993]. An adversary could therefore com-
press the original software into an unused memory area and then execute
and digest the compressed version using on-the-fly decompression tech-
niques.

A way around this attack is based on the difficulty of predicting and
monitoring a modern machine’s processor behavior. Although in the ab-
sence of external interrupts (which can be disabled) a processor operates in
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a deterministic fashion, the exact modeling and prediction of a modern
processor’s state after a calculation is nowadays impossible without a
low-level simulator and intimate knowledge of the processor’s architecture.
The difficulty arises in sophisticated pipelined processor architectures
[Hennessy and Patterson 1996] from the interdependencies of the multiple
functional units, the many levels of cache, and branch predictors all
dynamically changing their behavior as the program executes [Spinellis
1999].

Processor state can be set to a known value before the message digest
calculation and returned as part of the result to the server. The server can
then query a client known to contain valid software for the same values and
compare the results. Examples of processor state that can be queried are
the contents of the processor’s cache or the processor’s clock-cycle granular
“performance counter.” On-the-fly decompression will be immediately re-
vealed by examining the number of clock-cycles that were required to
calculate the hash using the performance counter. In addition, the behavior
of the cache is affected by its n-way associativity—even a shift of the
client’s software to a different address will probably affect the cache’s
behavior during the program’s operation.

The meta-reflective extension to the protocol we propose can be imple-
mented by amending the message exchange 1 (the reply of D) to contain a
representation of the state TD at the end of the calculation of H ~V, S, E!:

D 3 B : ~V, H~V, S, E!, TD! (10)

B will then need to perform the same calculation on a second device D9
known to contain an authentic version V of the software and compare the
corresponding results:

H~VL, S, E! 5? H~V, S, E! (11)

TD9 5? TD (12)

Although the precise details for obtaining T are hardware architecture and
implementation dependent, the general outline of this procedure is as
follows:

(1) Disable external interrupts.

(2) Set the system state to a known initial value (e.g. clear the cache and
the clock counter).

(3) Perform the hash calculation.

(4) Record the final system state T.

(5) Re-enable external interrupts.
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4. VULNERABILITY ANALYSIS

An obvious vulnerability of the described scheme stems from the possibility
of storing the original program code into locations not read by the hash
function (e.g. unused memory) and using that code for generating the hash
reply. A practical implementation of this approach could only store the
original parts of the modified portions in unused memory and adjust the
digest function accordingly. This vulnerability can be overcome by filling all
unused program memory space with random data elements and extending
the program space that can be hashed to include those elements. A
refinement of the above attack involves either storing the original program
code into unused data storage locations, or compressing the original and
the modified program code to fit into the program memory together. In the
latter case the modified program code is executed using either interpretive
or on-the-fly decompression techniques. Both attacks can be avoided by
using meta-reflective techniques or by structuring the software and the
communications protocol in a way that will make such attacks detectable.
As an example, the end that communicates with the device can measure
the reply latency for a given version to detect the slowdown imposed by
decompression or interpretation.

Our approach is particularly vulnerable to a man in the middle attack.
Specifically, an adversary can store a valid program in another pristine
device Dp; the compromised device Dc can relay the server authentication
requests to Dp and send back the response of Dp to the server. Although we
assumed that such an attack will typically be economically unattractive a
simple solution exists: in many cases where communication takes place
over a network with stable and controlled timing properties—such as the
applications described in the following section—the attack can be detected
by timing differences in the reply of Dc.

5. APPLICATIONS

In the following paragraphs we outline some applications of reflective
software integrity verification in the areas of mobile phones, intellectual
property protection, and smartcard-based systems.

5.1 Mobile Phone Software Validation

The attack against the firmware of a mobile phone described in Section 2.1
can be made considerably more difficult by making the phone’s software
sufficiently reflective. As an example, copies of the software of registered
mobile phones could be kept in a secure database. Every time a mobile
phone identifies itself to a base station, the base station could send it a
software verification command and compare the phone’s response against
the result calculated using the software copy in the server’s database.
Phones failing the software verification would not receive service, making
them unusable.
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5.2 Digital Content Intellectual Property Protection

One other deployed technology that fits the usage scenarios of our approach
is the one used for pay-per-view billing of digital content. The scheme used
by the Digital Video Express DVIX [Mehrotra 1999] discs allows consumers
to view a film they purchase on a cheap DVD-like disc within 48 hours after
first hitting the play button. Additional viewing sessions or “for life”
viewing can be selected from a menu and then paid by credit card. The
billing information is transferred overnight from the device to the company
operations center using a modem built into the device. It is natural to
assume that the device’s software will receive considerable interest from
adversaries wishing to be able to view the disks without getting billed.
Assuming that in order to continue to be able to view disks some keys will
need to be supplied by the system’s server (thus prohibiting the stand-alone
operation of a cracked system), the device’s communication protocol can be
enhanced to respond to reflective commands in order to guard against
unauthorized modifications to the device’s software. Similar strategies can
be used to protect pay-per-view TV set-top boxes as well as the next
generation of game consoles that will contain a built-in modem. Attacks
against set-top boxes and game console software are already a reality;
attacks against the DirectTV system were widely publicized; we are also
aware of a modification performed on Sony Playstation consoles to make
them work with illegal game copies on CD-R.

5.3 Smartcard Verification

Many smartcard applications such as electronic purses, credit cards, and
phone cards depend on the smartcard’s integrity to protect the stakehold-
er’s financial interests against fraud. Advanced smartcard models integrate
a microprocessor, RAM, ROM, an operating system, and application pro-
grams. Although smartcards are relatively tamper-proof devices, the possi-
bility of attacks based on reverse engineering, fault injection [Maher 1997],
or misappropriation of confidential design information cannot be excluded.
If a smartcard and its memory contents are successfully reverse engineered
an adversary could implement a contraband version of the smartcard, or a
corresponding emulator. A practical defense against contraband smart-
cards based on the same hardware as legitimate ones can be the extension
of the card’s protocol with reflective verification techniques. In addition,
meta-reflective techniques can be used to guard against attacks based on
smartcard emulators.

6. RELATED WORK

Reflective capabilities were originally proposed to provide computational
processes with the ability to reason both about a given domain and about
their reasoning process over that domain [Smith 1982, p. 3]. The use of the
reflection paradigm quickly spread beyond the area of programming lan-
guage design and was applied in diverse areas such as windowing systems
[Rao 1991], operating systems [Yokote 1992], and distributed systems
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[Edmond et al. 1995]. The power of reflection allows the implementation of
open, flexible, and adaptable systems; a requirement in the areas it has
been applied, and—in our view—an asset for security applications operat-
ing outside the absolute control of their stakeholders.

Reflective techniques for verifying the integrity of software are often
used as part of a device’s power-up self-test procedure. This approach
typically guards against hardware malfunctions of the memory system and
therefore uses simple checksums instead of cryptographically secure hash
functions. As an example, the BIOS ROM of the original IBM PC contains code
that calculates and verifies the ROM checksum at power-up time [IBM
Corporation 1983, p. A-6]. Similar self-checking techniques have also been
proposed for protecting programs against viruses [Cohen 1990]. Both types
of protection cannot withstand attacks that can reverse engineer and
modify the program that performs the check and, at the same time, is being
checked.

A protocol similar to the one we outline has been proposed to supply a
proof of existence of a particular block of data [Williams 1994]. When B
wants to prove to A that it possesses a particular block of data D (the
exemplar case mentioned entails auditing of off-site backup services), A
sends to B a random number R. When responding, B calculates and
returns to A the digest of RD. A can then compare this value against a
pre-calculated and stored value.

Finally, the use of hashes together with user-supplied passwords has
been proposed as part of a method to securely boot workstations operating
in a hostile environment [Lomas and Christianson 1995]. Under this
approach collision-rich hashing is used in conjunction with a low-entropy
user password to protect the kernel against off-line password guessing
attacks.

7. CONCLUSIONS

Reflection—the software reasoning about its operation—can provide a
software verification basis for a large, commercially important, class of
products and services. In the previous sections we formalized its use and
described a verification protocol that can be used to verify that the software
embedded in a device has not been modified. The reflective techniques can
be extended at a meta level by reasoning about the software’s reasoning
process thus providing an extra layer of security. The applications of our
approach include software verification in personal communication devices,
intellectual property protection, and smartcards. We believe that the
increasing convergence of communication and information devices in a
domain where security, privacy, and financial interests are often controlled
by software will provide a fertile ground for applying many reflective
techniques similar in spirit to the ones we described.
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