
Declarative Peephole Optimization Using String Pattern Matching

Diomidis Spinellis
Department of Information & Communication Systems

University of the Aegean
GR-83200 Karlobasi, Greece

dspin@aegean.gr

Abstract

Peephole optimisation as a last step of a compilation sequence cap-
italises on significant opportunities for removing low level code
slackness left over by the code generation process. We have de-
signed a peephole optimiser that operates using a declarative spec-
ification of the optimisations to be performed. The optimiser’s im-
plementation is based on string pattern matching using regular ex-
pressions. We used this approach to prototype an optimiser to con-
vert target machine instruction sequences containing conditional
execution of instructions inside loop bodies into code that adap-
tively executes the optimum branch instructions according to the
program’s branch behaviour.

Keywords

Peephole optimization; branch prediction; regular expressions.

1 Introduction

Peephole optimisation [ASU85, p. 554–558] as a last step of a
compilation sequence capitalises on significant opportunities for
removing low level code slackness left over by the code genera-
tion process. In addition, as peephole optimisers work on low level
(target) code they can perform transformations based on specific
characteristics of the target architecture. The declarative specifica-
tion and implementation of the peephole optimisation process can
offer a number of advantages over the procedural coding of the
same specification:

the implementation cost of the optimiser is only that of the
specification of the optimisations to be performed,

the correctness of the resulting implementation only depends
on the correctness of the initial specification, and

ACM SIGPLAN Notices, 34(2):47-51, February 1999.
Copyright c 1999 by the Association for Computing Machinery, Inc. Permis-

sion to make digital or hard copies of part or all of this work for personal or class-
room use is granted without fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior specific per-
mission and/or a fee. Request permissions from Publications Dept, ACM Inc., fax
+1 (212) 869-0481, or permissions@acm.org.

reasoning, documentation, and maintenance of the optimiser
can be performed at the specification level.

The emergence of versatile text processing languages and high
quality regular expression libraries has allowed us to experiment
with a peephole optimiser design based on regular expression
string pattern matching. In the following sections we describe a
prototype implementation of a flow-of-control optimiser based on
the declarative specification of optimisation patterns and their dy-
namic compilation into regular expression replacement sequences.
We have used this optimiser to implement a software-based dy-
namic jump prediction scheme.

The remainder of this paper is structured as follows: Section 2
introduces the optimiser’s design; Section 3 describes our motivat-
ing example based on a software-based dynamic branch prediction
scheme, while Section 4 details the optimiser’s implementation.
The complete listing of the optimiser prototype implementation is
provided as an Appendix.

2 Optimiser Design

The optimiser’s design is based on pattern matching [AG85] of
the target code against declarative specifications as illustrated by
the dataflow diagram in Figure 1. The optimiser initially converts
the declarative — domain specific [SG97] — optimisation speci-
fication into a string regular expression that can be applied to an
appropriate representation of the target code. As a trivial exam-
ple Figure 2 contains a declarative optimisation specification for
the elimination of jumps to jump instructions. The specification is
written as a pattern to be recognised followed by the corresponding
replacement code. The optimiser reads the target code, converts it
into a string, storing relevant ancillary information into a lookup
table, and then continuously applies the regular expression to the
string representation of the target code performing the specified
pattern-based substitutions. The repetitive nature of the regular ex-
pression application can result in higher order optimisations where
the output code of one optimisation step is further optimised by the
next application. Finally, the string representing the optimised tar-
get code is converted back into its normal representation based on
the lookup table.

1

Optimisation
Specification

Assembly
Code

Convert code
to string

Apply
regular expression

Create
regular expression

Convert string
to code

Optimised
Assembly

Code

Lookup
Table

Optimiser

Figure 1: The peephole optimiser dataflow diagram.

Input pattern
jmpL1
S1*

L1: jmpL2
=>
Output specification

jmpL2
S1*

L1: jmpL2

Figure 2: Simple declarative specification for eliminating jumps to
jump instructions.

3 Optimising Dynamic Branch Prediction

We tested the design of the optimiser using as a motivating ex-
ample the optimisation of branch instructions. Modern processors
make extensive use of overlapped instruction execution — pipelin-
ing — to increase their performance. This performance gain is not
realised to its full potential due to the existence of hazards: con-
ditions that prevent the execution of parallel instructions. Control
hazards arise from the pipelining of instructions such as branches
that change the program counter (PC). In this case the fetching
and execution of instructions that follow a conditional branch in-
struction are stalled until the branch location is determined [HP90,
p. 257]. It is possible to reduce pipeline stalls by predicting the
program flow and arranging for the appropriate instructions to be
fetched. In our example we use a loop code generation technique
that results in code that adaptively follows a predicted branch path
[Kra94].

3.1 Branch Prediction Methods

Branch prediction methods can be broadly distinguished between
static methods where the probable direction of program flow is
determined before the program execution, and dynamic methods
where branches are predicted during the program’s execution by
some measure of previous branch history [HP90, 307–314]. Static
branch prediction methods compile branches assuming that a given
branch will be taken or not taken according to various heuristics.
The scheme can be improved by using profiling data from previous
runs of the code [MH86, p. 401]. Dynamic schemes depend on
hardware memory which is used to store the behaviour of branch
instructions in their previous executions. Given the finite amount
of storage that can be used to store the behaviour of all branch in-
structions in a program, hashing and LRU-buffer techniques are
used to store predictions about a subset of the branch instructions
[Smi81]. In the case of branches that are usually not taken a one-bit
prediction scheme will result in two wrong guesses when a branch
is taken. In order to avoid this situation an additional bit can be
used to provide a second order prediction behaviour. A branch pre-
diction buffer can be further extended into a branch target buffer
by storing in the buffer the actual branch target instruction, thus
gaining an instruction fetch cycle. A comparison of software and
hardware schemes for reducing the cost of branches can be found
in [HCC89].

3.2 Adaptive Code

Instruction sequences containing conditional execution of instruc-
tions inside loop bodies can be compiled into code that adaptively
executes the optimum branch instructions according to the pro-
gram’s branch behaviour. A loop body containing an if-then-else
conditional statement is compiled into two loop sequences: one
sequence compiled for optimum behaviour when the then branch
is taken, and one compiled for optimum behaviour when the else
branch taken. For both sequences the code body for the part which
is predicted not to be executed is replaced with a branch to the cor-
responding code of the other sequence. Thus, the code in Figure 3
is compiled using branches with a high taken penalty as shown in

2

LOOP
statement-1
IF condition THEN

statement-2
ELSE

statement-3
FI
statement-4

END LOOP

Figure 3: Sample loop code.

L1: statement-1
test condition
branch if not condition L4

L2: statement-2
statement-4
branch L1

L3: statement-1
test condition
branch if condition L2

L4: statement-3
statement-4
branch L3

Figure 4: Dynamic loop compilation sequence.

Figure 4. The technique is applicable to many different loop code
sequences containing conditional branches.

4 Implementation

In order to test out our approach we implemented a prototype op-
timiser and used it to implement the dynamic branch prediction
scheme described above.

The optimiser first reads the compiler’s target language output
and converts all lines into strings composed of three token classes:

labels which are converted into the character L followed by an
integer identifying the label,

branch instructions which apart from the target label are not
modified, and

other code which is replaced by the character S followed by an
integer identifying that code.

A lookup table is built to convert the L and S tokens back to the
original target code labels and instructions. The following is a for-
matted sample fragment of tokenised target code:

S0025 L0000: S0026 S0027 jeL0001 S0028
jmpL0002 S0029 L0001: S0030 L0002: S0031
jmpL0000 S0032 S0033 S0034 S0035

The optimiser then reads the declarative specification of the op-
timisations to be performed. Figure 5 contains the optimisation

Input pattern
L1:

S1*
jeL2
S2*
jmpL3
S5*

L2:
S3*

L3:
S4*
jmpL1

=>
Output specification
N1:

S1
je N2

N4:
S2
S4
jmp N1

N3:
S1
jne N4

N2:
S3
S4
jmp N3

Figure 5: Example of optimiser input pattern and output specifica-
tion.

specification for the one-bit loop optimisation presented in Section
3.2. The specification is written as a pattern to be recognised and
the replacement code.

The pattern to be recognised can consist of:

label specifications names starting with L followed by digits,

jump instructions written as they appear in the target code out-
put, and

code place-holders for all other code represented by names start-
ing with S followed by digits.

Sn place-holders can be followed by a trailing Kleene star (*) to
specify an arbitrary number of instructions.

The replacement text is separated from the code pattern by a
‘=>’ symbol and consists of:

new label specifications names starting with N followed by dig-
its; these are replaced by unique label identifiers,

literal output written as it will appear in the target code output,
and

pattern specification place-holders and labels names starting
with S or L followed by digits; these are copied from the
matched pattern.

3

The input pattern is converted into an extended string regular ex-
pression with the appropriate tokens replaced with back-references
to the tokens in the previous part of the expression. Thus the pat-
tern specification in Figure 5 is translated into the following regu-
lar expression (means any number of digits and number is a
back-reference to a previous bracketed expression):

(L\d+):(S\d+)*je(L\d+)(S\d+)*jmp(L\d+)
(S\d+)*\3:(S\d+)*\5:(S\d+)*jmp\1

the corresponding replacement specification ($number is a ref-
erence to a bracketed part of the regular expression):

$N1: $2
je $N2

$N4: $4
$8
jmp $N1

$N3: $2
jne $N4

$N2: $7
$8
jmp $N3

and code to increment the label variables $N.
The optimiser works by continuously matching the input reg-

ular expressions against the tokenised program and replacing the
matched part with the specified output code. When no more
matches can be performed the tokenised program is converted back
into normal target code using the lookup table built in the first
phase to derive the optimised target code.

The declarative specification of the optimisation operations, and
the use of string regular expressions for code pattern matching re-
sulted in a flexible and compact implementation. The optimiser is
currently a 127 line program written in Perl [SCP96]. It has been
tested on Intel iAPX86 assembly output generated by the Microsoft
C compiler.

5 Conclusions

So far the approach and the optimiser have only been tested on
small example programs, a single optimisation specification, and
a limited number of flow-of-control optimisations. However, the
modest implementation effort invested and the flexibility offered
by the parametric, declarative specification of the optimisation op-
erations convinced us that this approach can be particularly suit-
able for rapid prototyping and experimentation with new optimisa-
tion methods, novel target architectures such as the Java VM, and
applications of higher order optimisations.

References

[AG85] A. V. Aho and M. Ganapathi. Efficient tree pattern
matching: An aid to code generation. In Conference
Record of the 12th Annual ACM Symposium on Princi-
ples of Programming Languages, pages 334–340, Jan-
uary 1985.

[ASU85] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Com-
pilers, Principles, Techniques, and Tools. Addison-
Wesley, 1985.

[HCC89] W.W. Hwu, T.M. Conte, and P.P. Chang. Comparing
software and hardware schemes for reducing the cost
of branches. In Proceedings of the 16th Annual Inter-
national Symposium on Computer Architecture, pages
224–233, June 1989.

[HP90] John L. Hennessy and David A. Patterson. Computer
Architecture: A Quantitative Approach. Morgan Kauf-
mann Publishers, 1990.

[Kra94] Andreas Krall. Improving semi-static branch prediction
by code replication. ACM SIGPLAN Notices, 29(6):97–
106, June 1994. Proceedings of the ACM SIGPLAN
’94 Conference on Programming Language Design and
Implementation (PLDI).

[MH86] Scott McFarling and John Hennessy. Reducing the cost
of branches. In Proceedings of the 13th Annual Inter-
national Symposium on Computer Architecture, pages
396–403, Tokyo, Japan, June 1986.

[SCP96] Randal L. Schwartz, Tom Christiansen, and Stephen
Potter. Programming Perl. O’Reilly & Associates, sec-
ond edition, 1996.

[SG97] Diomidis Spinellis and V. Guruprasad. Lightweight lan-
guages as software engineering tools. In USENIX Con-
ference on Domain-Specific Languages, pages 67–76,
Santa Monica, CA, USA, October 1997. USENIX.

[Smi81] James E. Smith. A study of branch prediction strate-
gies. In Proceedings of the 8th Symposium on Computer
Architecture, pages 135–148, Minneapolis, USA, May
1981.

Appendix: Optimiser Code Listing

Optimise a program with branches based on a
declarative specification

($#ARGV == 1) || die "usage: $0 rules code\n";
strprog($ARGV[1]);
mksubst($ARGV[0]);
print "subst=$subst\n" if ($debug);
eval($subst);
$_ = $prog;
unstrprog();
print;

Convert the change specification into the
regular expression substitution program $subst
sub mksubst
{

my($in) = @_;

open(IN, $in) || die "$in: $!\n";
for ($i = 0; $i < 10; $i++) {

4

$subst .= "\$N$i = \"\\\$BO${i}0000\";\n";
}
$n = 1;
$subst .= ’while ($prog =˜ s/’;
while (<IN>) {

last if (/ˆ\=\>/);
next if (/ˆ#/);
chop;
if (m/(([LS])\d+)/) {

$name = $1;
$type = $2;
if ($new = $pre{$name}) {

$new =˜ s/\$/\\/;
s/$name/$new/;

} else {
$pre{$name} = "\$$n";
$n++;
s/$name/($type\\d+)/;

}
s/\s+//g;

}
$subst .= $_;

}
$subst .= ’/’;
undef %N;
while (<IN>) {

next if (/ˆ#/);
if (s/(N(\d+))/\$$1/) {

$N{$2} = 1;
}
if (m/(([LS])\d+)/) {

$name = $1;
if (!$pre{$name}) {

printf STDERR "Unknown re-
place name $name\n";

exit (1);
}
s/$name/$pre{$name}/;

}
$subst .= $_;

}
$subst .= "/g) {\n";
foreach $i (keys %N) {

$subst .= "\t\t\$N$i++;\n";
}
$subst .= "

}
";

}

Convert program into the string $prog
sub strprog
{

my($in) = @_;

open(IN, $in) || die "$in: $!\n";
$S = $L = 0;
$s = $l = ’0000’;
while (<IN>) {

$L{internal} = program
$l{program} = internal

labels (start with a $)

if (m/(\$\w+)/) {
$name = $1;
if ($old = $l{$name}) {

$name =˜ s/([ˆ\w])/\\$1/g;
s/$name/$old/e;

} else {
$new = $l{$name} = "L$l";
$L{"L$l"} = $name;
$name =˜ s/([ˆ\w])/\\$1/g;
s/$name/$new/;
$L++;
$l = sprintf(’%04d’, $L);

}
}
Skip branches (start with j) and
labels (end with :)
if (m/ˆ\tj/ || m/:$/) {

chop;
s/SHORT//;
s/\s+//g;

} else {
Other statements

$name = $_;
$new = $s{$name} = "S$s";
$S{"S$s"} = $name;
$_ = $new;
$S++;
$s = sprintf(’%04d’, $S);

}
$prog .= $_;

}
}

Convert $_ back to the original program
sub unstrprog
{

while (m/(L\d+)/) {
$name = $1;
s/$name/$L{$name}/;

}
while (m/(S\d+)/) {

$name = $1;
s/$name/$S{$name}/;

}
}

5

