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Abstract

The allocation of buffers between workstations is amajor optimization problem faced by manufactur-
ing systems designers. It entails the determination of optimal buffer allocation plans in production lines
with the objective of maximizing their throughput. We present and compare two stochastic approaches
for solving the buffer alocation problem in large reliable production lines. The allocation plan is cal-
culated subject to a given amount of total buffer slots using simulated annealing and genetic algorithms.
The throughput is calculated utilizing a decomposition method.
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1 Introduction

The alocation of buffers between workstations is a major optimization problem faced by manufacturing
systems designers. It has to do with devising an alocation plan for distributing a certain amount of buffer
space among the intermediate buffers of a production line. It is a very complex task that must account
for the random fluctuations in mean production rates of the individual workstations of the lines. To solve
this problem there is a need for two different tools. The first is a tool that calculates the performance
measure of the line which has to be optimized (e.g., the throughput or the mean work-in-process). This
may be an eval uative method such as simulation, a decomposition method [1, 2], or atraditional Markovian
state model in conjunction with an exact numerical algorithm [3]. The second tool is a search (generative)
method that tries to determine an optimal or near optimal value for the decision variables, which in our
case are the buffer capacities of the intermediate buffer locations in the line. Examples of such methods
are the classical search methods such as the well-known Hooke-Jeeves method, various heuristic methods,
knowledge based methods, genetic algorithms, and simulated annealing.

Evaluative and generative (optimization) models can be combined in a ‘closed loop’ configuration by
using feedback from an evaluative model to modify the decision taken by the generative model. In such a
configuration the evaluative model is used to obtain the value of the objective function for a set of inputs.
The value of the objective function is then communicated to the generative model which uses it as an
objective criterion in its search for an optimal solution. In the rest of this paper we will use the formalism
S(G, E) to describe a closed loop system using the generative method G and the evaluative method E. The
generative modelsthat will be used in this paper are:

CE complete enumeration,
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RE reduced enumeration,

GA genetic agorithms, and

SA simulated annealing.

Furthermore, two evaluative models will be used:

Exact the exact numerical agorithm described in the work by Heavey at al. [3], and
Deco the decomposition algorithm numbered as A3 in the work by Dallery and Frein [2].

An overview of the existing research in the area of evaluative and generative models of manufacturing
systems can be found in two review papers[4, 5] and anumber of books[6, 7, 8, 9, 10, 11].

Several researchers have studied the problem of optimizing buffer allocation to maximize the efficiency
of areliable production line [12, 13, 14]. Their results are based on comprehensive studies to characterize
the optimal buffer allocation pattern. Authors have provided extensive numerical results for balanced lines
with up to 6 stations and limited results for lines with up to 9 stations. However, few methods can handle
this problem for large production lines, in a computationally efficient way. In this paper we compare two
stochastic approaches suitable for large production lines, one based on genetic algorithms, and one based
on simulated annealing. Details on how these methods can be applied to the problem can be found in the
work by Bulgak et a. [15] which describes the application of genetic algorithms for the buffer allocation
in asynchronous assembly systems and in our work [16] which describes a corresponding approach using
simulated annealing. The implementation of both approachesin this paper worksin close cooperation with
adecomposition method [2].

Simulated annealing is an adaptation of the simulation of physical thermodynamic annealing principles
[17] to the combinatorial optimization problems [18, 19]. Similar to genetic algorithms and tabu search
techniques [20] it follows the “local improvement” paradigm for harnessing the exponential complexity
of the solution space. The algorithm is based on randomization techniques. An overview of algorithms
based on such techniques can be found in the survey by Gupta et a. [21]. A complete presentation of
the method and its applications is described by Van Laarhoven and Aarts [22] while a number of works
present accessible algorithms for its implementation [23, 24]. As atool for operational research simulated
annealing is presented by Eglese [25], while Koulamas et a. [26] provide a complete survey of simulated
annealing applications to operations research problems.

Genetic algorithms[27, 28, 29] are global optimization techniquesthat avoid many of the shortcomings
exhibited by local search techniques on difficult search spaces, such as the buffer allocation problem. Gold-
berg [30] describes a number of diverse genetic algorithm applications, while Karr [31] presents their use
for modelling, design, and process control. Finally, Tompkins and Azadivar [32] use genetic algorithmsfor
optimizing simulated systems.

This paper is organized as follows: Section 2 states the problem and the assumptions of the model and
Section 3 describes the evaluation methodol ogy and associated implementation decisions. In Section 4, we
compare the numerical results obtained from the algorithms. Finally, Section 5 concludes the paper and
suggests some future research directions.

2 TheBuffer Allocation Problem

In asynchronous production lines, each part enters the system from the first station, passesin order from all
stations and the intermediate buffer locations, and exits the line from the last station. The flow of the parts
works as follows: in case a station has completed its processing and the next buffer has space available, the
processed part is passed on. Then, the station starts processing a new part that is taken from its input buffer.
In case the buffer has no parts, the station remains empty until a new part is placed in the buffer. Thistype
of lineis subject to manufacturing blocking (or blocking after service) and starving.

2.1 Assumptionsof the Model

The model operates under the assumption that the first station is never starved and the last station is never
blocked. The processing (service) times at each station are assumed to be independent random variables
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Figure1: A K -station productionlinewith K — 1 intermediate buffers

following the exponential distribution, with mean service rates, p;, i = 1,2,..., K. In our mode, the
stations of the line are assumed to be perfectly reliable, that is, breakdowns are not allowed.

The exponentiality of the processing times as well as the absolute reliability of the line's workstations
are rather unrealistic assumptions. However, the service completion times can be exponential or can be ap-
proximated by an exponential distribution. The variability in completion times may be attributed to failures
and repairs which implicitly exist in the problem at hand. Following this view, the proposed model may be
applied to any unreliable production line under the exponentiality assumptions for the service completion
times.

Figure 1 depictsa K -stationlinethat has K —1 intermediatelocationsfor buffers, labeled B, Bs, . .., Bk.

The basic performance measures in the analysis of production lines are the throughput (or mean pro-
duction rate) and the average work-in-process (WIP) or equivalently the average production (sojourn) time.

The object of the present work is the buffering of asynchronous, reliable production lines with the
assumptions given above. The objective is the maximization of the line’s throughput, subject to a given
total buffer space.

2.2 TheBuffer Allocation Problem

In mathematical terms, the buffer allocation problem can be stated as follows:

Find B = (B, Bs,...,Bk) soasto

max O (B) 1)
subject to:
K, B N
B; >0 @)
B; integer (i = 2,3,...,K)
where:

e N isafixed nonnegative integer, denoting the total buffer space available in the produc-
tion line,

e B = (Bs,Bs,...,Bk) is the ‘buffer vector’, i.e., a vector with elements the buffer
capacities of the K — 1 buffers, and

¢ Ok, denotes the throughput of the K -station line. Thisis afunction of the mean service
rates of the K stations, p;, (i = 1,2,...,K), of the coefficients of variation, CV;, of
the service times and the buffer capacities, B;.



The number of feasible alocations of N buffer slots among the K — 1 intermediate buffer locations
increases dramatically with NV and K and is given by the formula

N+K-2\ UIN+1D)N+2)---(N+K-2) 3
K -2 - (K —2)!
For this reason exhaustive search techniques are not practical for determining optimal configurations of
production lines with alarge number of stations or buffers.

3 Evaluation M ethodology

We have evaluated different approachesfor solving the optimal buffer allocation problem for large produc-
tion lines, by performing the following steps:

S1 We utilized the decomposition method [2] as an evaluativetool to determine the throughput of the lines.
The algorithm computes approximately the throughput for any K -station line with finite intermediate
buffers and exponentially distributed processing times.

S2 To find the buffer allocation that maximizes the throughput of the line, we utilized two stochastic meth-
ods, simulated annealing and genetic algorithms, specifically adapted for solving this problem.

In order to evaluate the applicability of the stochastic methods to the buffer alocation problem using
comparable architectures we designed and implemented a system to calculate the optimum buffer configu-
ration for a given reliable production line using a variety of algorithms[33]. The system takes as inpuit:

o the number of stationsin the productionline, K,
¢ the available buffer space, NV, and
o the station mean servicerates, u;,i = 1,2,..., K.

Based on the above input, the system calculates the buffer allocations B = (B-, Bs, ..., Bk) for the
maximal line throughput. Furthermore, the system is instrumented to provide as part of the solution the
throughput of the suggested configuration, as well as the number of different configurationsthat were tried.
The line throughput is used to evaluate the quality of the suggested configuration when compared with
the throughput calculated by other methods. The number of different configurations tried, is used as an
objective performance criterion, because the configuration evaluation step is the dominant execution time
factor and the basic building block of all optimization methods. In addition, a specia system configuration
allowsthe creation of afile containing step-by-step snapshots of the algorithm progress. After obtaining the
test results we wrote a number of scripts in the Perl programming language [34] that utilized the snapshot
file to visualize and animate the dynamic behavior of the algorithms.

We ran a number of tests on both balanced and unbalanced lines and compared the stochastic method
results against each other and against the results obtained by other methods. For short lines and limited
buffer space a complete enumeration of all configurations provided an accurate measurement base to verify
the stochastic algorithm results. For larger configurationswe used areduced enumerationin order to provide
the comparative measure.

3.1 TheReduced Enumeration M ethod

Reduced enumerationis based on the experimental observation that the absol ute difference of the respective
elements of the optimal buffer allocation (OBA) vectorswith N and N + 1 buffer slotsisless than or equal
to lL:

|IBN*t' - BN| <1, Vi: 2<i<K. 4

In this way, we have been able to derive the OBA by induction for any number IV of buffer slots that are to
be alocated among the K — 1 buffer locations of the line. The reduction works as follows: when N * and
K are given one needs to determine all the OBA vectorsfor N = 1,2,... , N*andthenfor N = N* + 1
by searching only the values of BN — 1, BN and BN + 1. Furthermore, this reduction starts after a



number of total buffer slots V. To quantify the reduction, by applying the improved enumeration it has
been experimentally observed that the number of iterations were reduced by at least 60% for short lines.
This reduction accounts for well over 90% for large production lines (with more than 12 stations). Recall
that the number of feasible allocations of N buffer slots among the K — 1 intermediate buffer locations
increases dramatically with N and K and is given by Formula (3).

3.2 Simulated Annealing

Simulated annealing is an optimization method suitable for combinatorial minimization problems. Such
problems exhibit a discrete, factorialy large, configuration space. In common with all paradigms based on
“local improvements” the simulated annealing method starts with anon-optimal initial configuration (which
may be chosen at random) and works on improving it by selecting a new configuration using a suitable
mechanism (at random in the simulated annealing case) and cal culating the corresponding cost differential
(AOk). If the cost is reduced, then the new configuration is accepted and the process repeats until a
termination criterion is satisfied. Unfortunately, such methods can become “trapped” in a local optimum
that is far from the global optimum. Simulated annealing avoids this problem by alowing “uphill” moves
based on amodel of the annealing process in the physical world.

Our implementation of the simulated annealing algorithm for distributing IV buffer spacein a K -station
line[16] follows the following steps:

1. [Setinitial line configuration.] Set B; < |N/K |, set Bi/s < Bgy» + N — Zf; IN/K].
2. [Setinitial temperatureTy.] Set T' < 0.5.

3. [Initialize step and success count.] Set S < 0, set U « 0.

4

. [Create new line with a random redistribution of buffer space.] Move R ,, space from a source buffer
Bpg, toadestinationbuffer Bg,: set B' < B, set Ry < |rand[2... K+1)|,set Ry « [rand[2... K+
].)J, st R, + Lrand[O. . -BRS + ].)J, Set.BR8 — BRS - R,, S-Z‘tBRd — BRd + R,.

5. [Calculate energy differential.] Set AE < Ok (B) — Ok (B').

6. [Decide acceptance of new configuration.] Accept all new configurations that are more efficient
and, following the Boltzmann probability distribution, some that are less efficient: if AE < 0 or
exp(=2E) > rand(0...1), set B + B',setU « U + 1.

7. [Repeat for current temperature]. Set S + S + 1. If S < maximum number of steps, go to step 4.
8. [Lower the annealing temperature] Set T + ¢T' (0 < ¢ < 1).

9. [Check if progress has been made] If U > 0, go to step 3; otherwise the algorithm terminates.

3.3 Genetic Algorithms

Genetic algorithms are also global optimization techniques that avoid many of the shortcomings exhibited
by local search techniques on difficult search spaces. They rely on modeling the problem as a population of
organisms. Every organism represents a possible valid solution to the problem. Organisms are composed of
alleles representing parts of a given solution. Standard genetic recombination operators are used to create
new organisms out of existing ones by combining alleles of the existing organisms. In addition, mutations
can randomly change the composition of existing organisms. Typically, the algorithm evaluates all the
organisms of the population and creates new organisms by combining existing ones based on their fitness.
This procedureis repeated until the variance of the population reaches a predefined minimum value.

An important characteristic of our implementation of the genetic algorithm concerns the representation
of the solution. A good representation should ensure that the application of standard crossover recombi-
nation operators (where a new organism is composed from parts of two existing ones) would result in a
valid new representation. Representing the line configuration as a vector B of buffers allocated across the
line is not such a representation since given two buffer configurations (B, B2) and recombining them as
anew buffer B' at point ¢ sothat By, . < Bio...and Bl  « Bzcq1..x Will not guarantee that

C

Efi . Bi = N i.e. that the resulting line configuration will be composed of N buffers. For this reason



we devised an aternative, position-based, representation using a vector P of length equal to the number of
buffers N. Every element of P can take values 0... K representing the position of the given buffer dlot
within the production line. The two representations are equivalent; the vector P_can be mapped to B as

follows:
Y1 ifi=
Bi = z%{ 0 otherwise ©)
j:

The position-based representation will generate valid buffer configurationsusing standard genetic crossover
and mutation operators. Using this representation, the genetic algorithm we implemented for distributing
N buffer spacein a K -station line is described in the following steps:

1. [Initialize apopulation of size S.] Set Py__so..n < [rand[0... K —1)].

2. [Evaluate population members creating throughput vector 7'.] For i < 0...S: set T; < O (P,).
3. [Create roulette selection probability vector R . | Set R; + Z;:O(Tj/ Ef:o Ty).

4. [Create new population using crossoversfromthe previouspopulation.| Fori < 0...S: ifrand[0...1) <
crossover rate, set ¢ «— [rand[0...S)], set P}y . < Pr,o..c; &t P/ .y N < Pr,c+1..n; Oth-
erwise set P/ < Pg, by selecting each r using the roulette selection probability vector so that

R, <rand[0...1) < Ry4;.

5. [Introduce mutations.] For ¢ < 0...S: for j < 0...N: if rand[0...1) < mutationrate, set
P} ; « [rand[0... K —1)].

6. [Keep fittest organism for elitist selection strategy.| Select f sothat Ty > Tp...s, Set P[rand[o___S)J —
P;.

7. [Make new population the current population.] Set P < P'.

8. [Loop based on the population’s variance.] If Zf: o|Ty — T3] > maximum variance go to step 2,
otherwise the algorithm terminates with the optimal line setup in Py.

The implementation of genetic algorithms can be tuned using a number of different parameters. In
our implementation we used the parameters that Grefenstette [35] derived using meta-search techniques
namely:

e apopulationsize S of 50,

e acrossover rate of 0.6,

amutation rate of 0.0001,

ageneration gap of 1 (the entire population is replaced during each generation),

no scaling window, and

an elitist selection strategy (the organism with the best performance survives intact into the next
generation).

The random floating point numbers0 < R < 1 used for selecting energy differentials based on the anneal-
ing temperature R < exp( iTE), the crossover points, the mutation rates, and the selection of organisms
are produced using the subtractive method algorithm [36]. Finally, the evaluative function that we used for
calculating AE is based on the decomposition method [2].
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Figure 2: Stochastic method operation comparison

4 Method comparison

Before detailing the comparative results of our examination, it isinteresting to visualize the operation of the
two stochastic methods. Figure 2 depicts the runtime behavior of the two methods. Each point on the two
scatter charts represents a given production line throughput value at a specific step of the algorithm. Both
charts depict the cal culation of the placement of 30 buffersin a balanced line of 10 stations. The simulated
annealing algorithm optimizes a single solution in the specific examplein 45.000 iterations. The solution’s
throughput val ue oscillates as both better and worse solutions are randomly selected at each iteration step.
As can be seen on the chart, the oscillation width decreases following the algorithm’s exponential cooling
schedule and converges towards the optimal value.

The genetic algorithm is based on the implicit parallelism of the solutions represented by the initial
population depicted on the chart's z-axis. Thus, in the specific example, it terminates with an optimal
configuration after 250 generations. As the chart demonstrates the search starts with a wide spectrum of
different solutions which are evaluated and evolve in parallel with non-optimal solutions gradually becom-
ing extinct. Mutations and recombinations regenerate suboptimal solutions, but, due to the “survival of the
fittest” organism selection strategy, their survival does not last for long.
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Figure 3: Computed throughput of simulated annealing S(SA, Deco) and genetic algorithms S(GA, Deco)
compared with complete enumerationsusing the exact S(CE, Exact) and the decomposition eval uative meth-
ods S(CE, Deco) for 9 stations (left); compared with reduced enumeration S(RE, Deco) for 15 stations
(right).

Our first comparison experiment concerned the algorithm operation on balanced lines for cases where
exact solutions were known. In Figure 3 we present the optimum throughput configurations for balanced
lines found using the stochastic methods against the throughput found using complete (for 9 stations) and



reduced enumeration techniques. It is apparent that the stochastic algorithm results are almost identical and
follow closely the results obtained by the other methods. Both methods are subject to the reduced evaluative
accuracy of the decompaosition method compared to the Markovian model.
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Figure 4: Simulated annealing S(SA, Deco) and genetic algorithms S(GA, Deco) with decomposition eval-
uation versus complete enumerated Markovian S(CE, Exact) throughputs for unbalanced lines with 46
stations.

In addition to the balanced line evaluation, we compared the stochastic methods against unbalanced
line enumeration using the Markovian evaluative procedure for a variety of line sizes, service time con-
figurations, and available buffer space. The results are summarized in Figure 4. It is apparent, that the
stochastic method configurations — although identical to each other — are not always optimal for limited
available buffer space; however, they quickly converge towards the optimal configurations as buffer space
increases. This difference can be accounted by the use of the fast decomposition eval uative procedure used
in the stochastic algorithm implementation yielding approximate results against the use of the Markovian
evaluative procedure for the enumeration method yielding exact results.
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Figure 5: Performance of simulated annealing S(SA, Deco) and genetic algorithms S(GA, Deco) compared
with complete S(CE, Deco) and reduced S(RE, Deco) enumerationsfor 9 stations and 15 stations. Note the
logio scale on the ordinate axis.

Our goal for using stochastic methods is to optimize large production line problems where the cost of
other methods is prohibitively expensive. As an example the reduced enumeration method when run on
a 15 station line with a buffer capacity of 30 units took more than 10 hours to complete on a 100MHz
Pentium processor. As shown in Figure 5 the cost of the stochastic methods is higher than the cost of the
full and reduced enumeration methods for small lines and buffer allocations. However, it quickly becomes
competitive as the number of stations and the available buffer size increase. In addition, the performance
of the genetic algorithm implementation is approximately an order of magnitude better than the simulated
annealing implementation. Notice that — in contrast to the deterministic methods — the stochastic method
cost does not increase together with the available buffer space and that it increases only linearly with the
number of stations.
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Figure 6: Performanceand accuracy of simulated annealing S(SA, Deco) compared with genetic algorithms
S(GA, Deco) for large production lines. Note thelog o scale on the ordinate axis.

Finally, Figure 6 depicts the comparative performance and cal culated throughput for the two stochastic
methods when optimizing lines of up to 400 stations and 1200 buffers. The genetic algorithm imple-
mentation producing solutions with only 2.000.000 evaluations even for 400 station lines is clearly the
performance winner. However, as depicted on the right hand chart, the throughput of the line configuration
found by the genetic algorithm is consistently lower than the throughput of the line found by the simulated
annealing method. The results we obtained could not be independently verified, because no other numerical
results for the buffer allocation problem in large production lines can be found in the open literature.



5 Conclusions and Future Directions

The results obtained applying stochastic methods to the reliable line near-optimal buffer allocation problem
are interesting. The performance and the accuracy of the methods, although inferior for optimizing small
lines with limited buffer space, indicate clearly that they become the methods of choice as the problem
size increases. Both methods can be used for optimizing large line configurations with simulated annealing
producing more optimal configurations and the genetic algorithm approach leading in performance. This
indicates that the two methods can be used in complimentary fashion. Real-time applications can utilize
genetic algorithms for the swift recalculation of optimal configurations, while batch-oriented calculations
can utilize ssmulated annealing for obtaining an optimal configuration.

Further investigation is needed in order to fully evaluate the potential of the two methods. The failure,
in large production lines, of the genetic algorithm method to locate the optimal configuration found by the
simulated annealing method is intriguing. 1t would be interesting to carefully examine the “endgames’
of the two methods and find if and how the genetic algorithm implementation can be tweaked to evolve
towards more optimal configurations. A dynamic re-adjustment of the algorithm’s parameters (population
Size, crossover rate, mutation rate, etc.) forms one such possibility.

The annealing schedule and the genetic algorithm parameters that we used can clearly be optimized
potentially increasing both methods' accuracy and performance. The use of heuristics in setting up the
initial buffer configuration can decrease the number of steps needed for reaching the optimal. The differing
relative strengths of the two stochasti ¢ approaches could al so be combined in the form of ahybrid algorithm.
Such an algorithm could capitalize on the rapid convergence exhibited by the genetic algorithmsto quickly
arrive at an acceptably efficient solution pruning away dead-ends. It could then pass the quickly derived
buffer configuration to a simulated annealing a gorithm which would use it as a starting point for obtaining
an optimal solution.
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