
Palmtop Programmable Appliance Controls

Diomidis Spinellis
University of the Aegean
dspin@aegean.gr

Abstract

Palmtop PCs with infrared transceivers provide a user-
friendly, intelligent, and extensible alternative to the remote
controls traditionally used to control home appliances. We
describe the design and implementation of a palmtop pro-
grammable appliance control system. The system is de-
signed around RDL, a domain specific language, allowing
the realisation of virtual remote control units and sophis-
ticated interaction sequences. The multitude and diversity
of control applications programmed in RDL point towards
a new appliance control paradigm based on a client-server
architecture and intelligent user interfaces.

Keywords: Remote control; infrared interfacing; do-
main specific language.

1 Introduction

We are constantly witnessing the rapid convergence of
many consumer and information technology appliances. An
interesting application of this convergence that has received
relatively less attention than the widely publicised conver-
gence of the World Wide Web and television is the remote
control of consumer appliances using personal computers.
The universal adoption of the remote control as the pri-
mary appliance interface combined with the miniaturisation
of personal computers to the size of palmtop devices has
made possible the realisation of truly programmable, versa-
tile, and user friendly appliance control systems.

During the last five years we have experimented with a
number of such technologies and implemented these de-
signs on the increasingly powerful palmtop devices that ap-
peared on the market. This paper describes the design, im-
plementation, and use of a palmtop-based universal appli-
ance control that can be programmed using a lightweight

Personal Technologies, 2(1):11–17, March 1998.
This is a machine-readable rendering of a working paper draft that led

to a publication. The publication should always be cited in preference to
this draft using the reference in the previous footnote. This material is
presented to ensure timely dissemination of scholarly and technical work.
Copyright and all rights therein are retained by authors or by other copy-
right holders. All persons copying this information are expected to adhere
to the terms and constraints invoked by each author’s copyright. In most
cases, these works may not be reposted without the explicit permission of
the copyright holder.

domain-specific language. The system we describe is pub-
licly available [1] and has been used in a number of diverse
applications. The remainder of this paper is structured as
follows: in section 2 we briefly describe the salient techno-
logical characteristics related to appliance remote controls,
palmtop computer infrared interfacing, and domain-specific
languages; section 3 provides the design of the remote con-
trol system; section 4 contains important implementation
details; section 5 outlines some interesting applications of
our system as reported by other users. Section 6 concludes
the paper by providing pointers to possible future enhance-
ments and technological advances.

2 Technology Overview

The system we describe in this paper bridges a set of three
diverse technologies: infrared remote controls, infrared in-
terfacing of palmtop computers, and domain-specific lan-
guages.

2.1 Remote Controls

Historically consumer appliance remote controls were de-
veloped to provide a convenient way to control the appli-
ance without having to move near it. Early remote controls
were essentially detachable control panels connected to the
appliance through a thick umbilical cord. The introduction
of solid state electronics and integrated circuits allowed the
development of battery-powered wireless remote controls.
Although radio frequency and ultrasound technologies have
been used in the past to provide the communication path be-
tween the control and the appliance, nowadays virtually all
appliance remote controls are based on optoelectronic com-
ponents communicating using infrared light signals. The
evolution of appliance controls currently moves towards the
transfer of functionality from the appliance to the remote
control. A number of modern appliances provide only min-
imal or no control on the main appliance and delegate all
functionality to the remote control. Notable such exam-
ples are VCRs, televisions, and air-conditioners. Another
interesting and helpful for our application trend is the inclu-
sion of remote control interfaces on appliances where such a

1



Figure 1: Sample of a 12-bit remote control signal.

control might seem illogical such as car radios and personal
stereos.

Most remote controls provide essentially one-directional
links between the control and the appliance. The reverse
feedback of the control loop is usually provided directly
to the human in the form of an indicator on the appliance,
or altered appliance behaviour. Contrary to what a ratio-
nal technologist might expect, the transmission format of
most remote controls, although similar at the lowest (phys-
ical link) layer, diverges phenomenally when one examines
the encoding method used to transmit the command. It is
this variety of encoding methods that ensures that remote
controls from different manufacturers do not control other
appliances (they still interfere with each other though and
therefore can not be used at the same time). The majority
of remote controls encode commands by pulse modulating
a 980nm infrared light signal at a carrier frequency ranging
from 32KHz to 40KHz.

The modulated sequence typically transmits a binary
word using a self-clocking mechanism. An example of such
a sequence is shown in Figure 1. Word length varies from
12 to 48 bits. At the beginning of each word a continu-
ous signal burst is often used as a mechanism to tune the
receiver’s automatic gain control circuit. Bits are encoded
using either pulse width or biphase encoding. More compli-
cated schemes such as clock-based serial transmission are
often used for communication between more intelligent de-
vices such as computers with infrared ports.

A number of industry standards such as RC-5 and RC-6
by Philips partition the code space into areas representing
the manufacturer, the application (TV, VCR, CD, etc.), and
the function. Most code spaces are sparsely populated. In-
teresting undocumented functions are often hidden in the
code space. As an example, by a sequential search through

the code space we have discovered:

the possibility to “mute” the volume of a MIDI system
that did not provide such a function on the remote con-
trol,

to provide direct access to CD seek functionality on a
portable CD player that only provided such function-
ality using a mode change control on the front panel,
and

to sequentially “zap” between all radio stations on a
radio tuner.

2.2 Infrared Interfacing

Palmtop computers are being increasingly used as platforms
of choice for advanced human-computer interaction appli-
cations [2]. Although we performed the first infrared con-
trol experiments on desktop workstations using custom de-
coding circuits, we quickly decided to use as our platform
the Hewlett-Packard palmtop PCs (HP-95LX, HP-100LX,
HP-200LX). The infrared interfacing circuit is essentially
the same on all three machines. The infrared transmitter
consists of an infrared LED that can be driven in a variety
of ways: in serial communications mode through the out-
put of the UART (universal asynchronous receiver transmit-
ter) chip, in software controlled mode by directly pulsing a
given bit, or in modulated software controlled mode. The
last way, which is the one we used, allows the generation of
modulated signals by using the UART chip 1.84MHz baud
rate generator clock as the modulation source and control-
ling it by switching a single bit.

Although most off-the-shelf remote control receiver
modules (such as the Sharp GP1U28XP) provide integrated
demodulation functionality, the general purpose infrared re-
ceiver hardware of the palmtop PC does not have that capa-
bility. It does however provide a latching “event” bit which
is set to one whenever an infrared pulse is received. The
bit is “sticky” and needs to be reset by software to the zero
state. Using this bit, it is possible to construct a digital low-
pass filter to provide the desired 40KHz demodulation func-
tion.

Lately, an industry body called the Infrared Data Associ-
ation (IrDA) was formed aiming to create an interoperable,
low cost, low power, half-duplex serial data interconnection
standard to support a walk-up, point-to-point user model.
Although the IrDA serial infrared physical layer link (IrDA-
SIR) [3] specification is based on the same technology as
our application, the modulation specified is not compatible
with the formats used by remote controls and will therefore
not concern us in this article.

2



2.3 Domain Specific Languages

A domain-specific language [4] is a programming language
tailored specifically for an application domain: rather than
being general purpose it captures precisely the domain’s se-
mantics. Examples of domain-specific languages include
yacc used for program parsing, html used for document
mark-up, and vhdl used for hardware descriptions. Domain-
specific languages allow the concise description of an appli-
cation’s logic reducing the semantic distance between the
problem and the program [5]. As a design choice for the
programming interface of an appliance control a domain-
specific language presents a number of distinct advantages
over a “hard-coded” program logic or a graphical user in-
terface:

Versatility A small set of language statements allows the
specification of an unlimited set of remote control fea-
tures and functions. Since the public release of our sys-
tem we were informed of many applications we could
not have envisaged during its design.

Small Footprint Although palmtop computers are becom-
ing increasingly powerful, the memory requirements
of an application still matter. A domain-specific
language interpreter can be implemented under tight
memory constraints. As an additional advantage, small
applications start up relatively quickly; an important
characteristic for a remote control.

User Control The end user can control most aspects of the
application. The application’s core engine can remain
stable, allowing implementation effort to be directed in
optimising its domain-related functionality, rather than
adding gratuitous bells and whistles.

Concrete Expression of Domain Knowledge Domain-
specific functionality is not coded into the system or
stored in an arcane file format; it is captured in a con-
crete human-readable form. Programs expressed in
the domain-specific language can be split, combined,
shared, published, put under release control, printed,
commented, and can even be automatically generated
by other applications.

3 Design

The system architecture is split into three parts:

a generic infrared interface engine,

a domain-specific language interpreter, and

an infrared command recording interface.

The domain-specific language, termed Remote Definition
Language (RDL), provides commands to draw the screen,

and key bindings to send the appropriate remote control
codes. In the following paragraphs we provide a brief de-
scription of the RDL syntax and semantics.

3.1 Lexical Structure

An RDL program is stored as a single file. Different files
can be used to organise control sets and user interfaces. An
RDL file consists of a set of commands. Every command
must start on a new line; this simplifies the design of the
parser and the interpreter’s implementation. White-space
and blank lines are ignored. Lines that begin using the “#”
character are regarded as comments. Remote control sig-
nals are relatively compact and are therefore represented as
inline ASCII strings using a portable encoding convention.

3.2 Program Structure

The commands inside an RDL definition file are organised
as procedure definitions. No commands are allowed outside
the scope of a procedure definition. A procedure definition
is structured as follows:

define <procname>
<command>
...

end

This construct defines a procedure named procname. The
commands are executed when the procedure is invoked us-
ing the command call procname.

3.3 Command Description

The minimalistic nature of RDL is exemplified by the nine
commands it supports:

key ’character command

key number command Installs a key binding for the speci-
fied key. When a key is pressed the command defined
by the binding is executed. ASCII keys are specified
using the ’character notation. Other keys, such as ar-
row keys, are specified using key’s scan code in hex-
adecimal following the C language 0x convention.

clkey Clears all key bindings.

send ”string” Sends the raw code signals specified by the
string to the infrared control port.

call procname Upon execution of the call command con-
trol is transferred to the named procedure. When the
procedure’s end statement is reached control is trans-
ferred back to the command after the call command.

cls Clears the screen contents.

3



image filename Displays the image file specified by file-
name.

print row column ”string” Prints a string at the row and
column specified.

pause seconds Pauses the specified number of seconds.

exit Terminates the program.

3.4 Execution Semantics

Program execution starts from the procedure called main.
Control proceeds serially from that point transferring con-
trol when a call command is encountered. When the called
procedure has been executed (i.e. the end command has
been reached) control is transferred back to the command
immediately following the call command. As the language
does not provide any imperative input statements the main
procedure normally terminates after some initial process-
ing. At that point the system enters an event loop which
executes commands based on keyboard input events and
the corresponding key definitions. The program terminates
when the exit command is executed. A simple way to call
procedures based on the current date and time is provided
based on a dynamic procedure name substitution mecha-
nism.

A minimal file for the control of a simple on/off device is
the following:

# Minimal remote control file
define main

print 0 0 "+):On -):Off ESC):Quit"
key 0x1b exit
key ’+ send "##’##[##’#%+##’##X##’##X"
key ’- send "AAA:#[[[’#%+##’ZcXcc’ccY"

end

A remote control file for controlling two devices with a
mode change (e.g. a TV and a VCR) is illustrated in Figure
2. RDL programs can be used to create new features that
are not available in the original products. As an example
the RDL program in Figure 3 implements a “zap” command
that cycles through three TV stations.

3.5 The Infrared Command Recording Inter-
face

The system provides a mode used to record remote control
commands. The recording process consists of pressing a
remote control key in order to send the infrared signal to
the palmtop PC and subsequently pressing the palmtop key
that will correspond to the remote command. The result
of this process is a complete working RDL program. The
program consists of assignments of appropriate key bind-
ings and send commands for all infrared sequences that

define main
cls
clkey
print 0 0 "t) TV v) Video ESC) Quit"
key ’t call tv
key ’v call video
key 0x1b exit

end

define tv
print 0 0 "ESC) Main"
cls
clkey
key 0x1b call main
# TV command key bindings follow here

end

define video
...

Figure 2: RDL example of a mode change.

define z1
send "##’##[##’#%+##’##X##’##Y"
key ’z call z2

end

define z2
send "##’##[##’#%+##’##A##’##B"
key ’z call z3

end

define z3
send "##’##[##’#%+##’##M##’##N"
key ’z call z1

end

main
key ’z call z1
...

Figure 3: RDL example of a zap button implementation.

4



were recorded. This RDL program can either be used di-
rectly, or it can be customised by adding user interface el-
ements, merging it with other RDL programs, splitting the
key bindings into different screens, or enhancing it in other
creative ways. The generation of a working RDL program
from the recording process makes the system immediately
useful, without requiring its users to learn any RDL syntax.

4 Implementation

Similar to the application design, the implementation is split
into two parts:

the infrared transceiver engine, and

the RDL interpreter.

The infrared transceiver engine has to remove the 40KHz
carrier signal from remote signals being recorded and store
the resulting waveform in a compact form. When a remote
control signal is to be transmitted it has to modulate the
stored waveform using a 40KHz carrier and send back the
same waveform. The 40KHz carrier signal is removed us-
ing a digital bandpass filter based on the latching feature
of the infrared receiver circuit. Incoming infrared signals
set a bit which has to be cleared by software. The receiver
recorder loops while a signal is received testing the bit and
immediately setting it to 0. Since the 40KHz modulation
period (25 ) is less than half of the period of a complete
recorder loop, the loop will always find the bit set to 1 as
long as a carrier frequency is being transmitted. The mod-
ulation of the waveform during transmission is a lot sim-
pler. The transmitter circuit can modulate the outgoing sig-
nal using the output of the serial port BAUD-rate generator.
By setting the divisor registers to the appropriate value, the
BAUD-rate generator 1.84MHz clock can be used to derive
a 40KHz modulation frequency.

A second implementation difficulty of the infrared
transceiver was the reliable recording and playback of re-
mote control waveforms. Since the palmtop PC clock cir-
cuits do not provide sufficient granularity to determine the
length of the infrared waveform pulses the transceiver is
based on software-controlled counting loops. A major prob-
lem is the timing synchronisation of waveform recording
and playback. This is solved by factoring the receiving
and transmission functions into the same loop thus ensur-
ing that the code execution paths are similar. Compiler-
assigned register variables are common to both parts; with
a careful choice of code statements the receiving loop takes
the same number of clock cycles as the transmission loop.
These techniques allowed us to code the transceiver in a
high-level language (C), insulate the hardware dependen-
cies, and painlessly integrate the transceiver with the rest of
the system.

Figure 4: A virtual remote control screen.

An important implementation objective of the RDL in-
terpreter was a small memory footprint; an essential fea-
ture given the limited memory of palmtop PCs, and the
additional memory requirements of the palmtop’s applica-
tion shell. The interpreter is implemented using a simple
recursive-descent parser [6, p. 181] and a hand-crafted lexi-
cal analyser. The RDL file is never tokenised or read into
memory as is the common case in most interpreted lan-
guages. Instead, capitalising on the speed of the palmtop
memory-based filesystem, interpretation is performed di-
rectly on the file contents. In order to increase the appli-
cation’s responsiveness — memory-based file access still
suffers from the operating system overheads — an aggres-
sive caching strategy is implemented. The file offsets of the
most recently used procedure definitions are stored in an in-
memory structure allowing fast random access to their con-
tents. More importantly, all key bindings are only stored as
file offsets to the actual code sequence that they have been
bound to.

5 Interesting Applications

The system has been publicly available over the Internet for
over four years. During that period we received positive
feedback from many users and became aware of applica-
tions that we had not envisaged during its initial design.
The most obvious use of the system is the implementation
of a master remote control. A number of virtual remote
controls are unified as a single palmtop-based unit. Users
can typically select the device they want to address and the
palmtop’s screen changes to reflect the user-interface for

5



the specific control. Most users try not to mimic the func-
tionality of the controls they are replacing, but to provide a
unified user-interface for all appliances. This user-interface
re-engineering often produces interfaces that are more user-
friendly than the original one. This should come as no sur-
prise given the abysmal quality of some electronic appli-
ance user-interfaces [7, p. 174–177]. The full keyboard
of the palmtop can also be used to simplify the program-
ming of devices that rely on complicated key sequences
for their programming. As an example a user has imple-
mented a mini-disk title editor and database [8], that uses
the palmtop’s alphanumeric keyboard instead of the more
limited keyboard provided by the mini-disk remote con-
trol. The ability to start-up a palmtop application at a spe-
cific time allows the timed control of appliances such as
air-conditioning units and the simplified programming of
VCRs. The repetition of palmtop timing events can be flexi-
bly programmed allowing an infinite variety of applications.

Unfortunately, in addition to a number of original and
unanticipated uses of our system, we also became aware of
a more sinister application domain. Some security systems
used in cars and homes are remote controlled using infrared
signals. Many controls use a fixed 4–32 bit signal to open
a car’s doors or deactivate the alarm system security. This
signal can be easily intercepted and recorded by a criminal
and played back at a latter time in order to deactivate the se-
curity system. The problem lies in the design of the security
systems which use a immutable control signal instead of a
cryptographically secure authentication protocol. The prob-
lem is not unique to infrared-controlled security systems;
unencrypted passwords are used by most Internet protocols
(FTP, TELNET, POP3). In both cases advances in technology
and the sophistication of criminals have made it imperative
to deploy secure authentication protocols. The computa-
tional power of a palmtop PC is the minimum required for
experimenting with protocols based on public key encryp-
tion methods.

6 Conclusions

The design and implementation of an intelligent remote
appliance control based on a domain specific language
opened our mind to many interesting possibilities in the
field of remote appliance control. RDL although capa-
ble of expressing a complicated remote control application
lacks portability among appliances. It will be interesting
to split it between an appliance-specific part implementing
low-level functions (e.g. “fast forward”, “rewind”), and a
user-interface part . This architecture allows the distribu-
tion of appliance “drivers” and portable, sophisticated [9]
user-interface programs. The portability of appliance user-
interface programs and the ubiquity of appliance drivers
can radically change the way we interact with appliances.
Appliance manufacturers can distribute just the driver for

their appliance as computer hardware manufactures do to-
day. End-users will be free to choose the best universal
appliance control available instead of stocking up remote
controls of incompatible user interaction designs. Until this
change materialises RDL programs and libraries running on
palmtop PCs can act as middleware between the appliance
control engine and the user-interface program.

The increased processing power, memory, and pro-
grammability offered by the proposed architecture at the
remote control end opens up a number of interesting
possibilities. Palmtop-based appliance controls can of-
fer value-added services which the computationally and
communication-challenged appliances can never hope to
provide. Examples of these services are:

the automatic programming of all appliance clocks
with the correct time,

the bootstrapping of tuners and TV sets with the user’s
preferred set of stations,

the programming of air-conditioning units according
to the season and the time of day,

the maintenance of a consistent set of dial memories
among the home, office, and the cellular phone, and

the support of modern authentication protocols for se-
curity systems.

Eventually a client-server architecture [10] will evolve
where appliances will just perform their basic function —
record a TV broadcast on tape, wash the dishes, play a CD

— and a single versatile, user-friendly, intelligent appliance
control based on Windows CE or Java Everywhere will be
the user’s interface client.

Let the intelligent appliance control age begin.

References

[1] Diomidis Spinellis. Remote control 100. Online.
ftp://eddie.mit.edu/pub/hp95lx/hp100lx/rc.zip, 1994.
March 1998.

[2] Haruo Noma, Tsutomu Miyasato, and Fumio Kishino.
A palmtop display for dextrous manipulation with
haptic sensation. In CHI ’96. Conference Proceed-
ings on Human Factors in Computing Systems, pages
126–133. ACM, 1996.

[3] Joe Tajnai. Serial Infrared Physical Layer Link
Specification. Infrared Data Association, ver-
sion 1.2 edition, November 1997. Online.
http://www.irda.org/standards/pubs/IrPHY 1 2.PDF.
11 April 1998.

[4] USENIX. USENIX Conference on Domain-Specific
Languages, Santa Monica, CA, USA, October 1997.

6



[5] Diomidis Spinellis and V. Guruprasad. Lightweight
languages as software engineering tools. In USENIX
Conference on Domain-Specific Languages, pages
67–76, Santa Monica, CA, USA, October 1997.
USENIX.

[6] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ull-
man. Compilers, Principles, Techniques, and Tools.
Addison-Wesley, 1985.

[7] Donald A. Norman. The Psychology of Evereday
Things. BasicBooks, New York, NY, USA, 1988.

[8] Helmut Lucke. Using the HP200LX to label mini
discs. Online. http://www.jyu.fi/minidisc/minidisc/-
mdlbl/mdlbl.htm. 11 April 1998, August 1997.

[9] Thomas Baudel and Michel Beaudouin-Lafon. Cha-
rade: Remote control of objects using free-hand ges-
tures. Communications of the ACM, 36(7):28–35, July
1993.

[10] Alok Sinha. Client-server computing. Communica-
tions of the ACM, 35(7):77–98, July 1992.

7


