
Introduction

Downloadable executable content (or mobile
code) are based on the idea of transmitting data
that are actually codes to be executed. Use of
the World Wide Web has exploded over the past
few years, and this growth of popularity has had
a significant impact on the number of Web-
based document authors using mobile code. An
increasing number of authors are including Java
applets or other forms of mobile code in their
pages, as well as Safe-Tcl scripts (tclets) as
executable contents within their e-mail mes-
sages to be executed on arrival at the reader’s
machine. Although the majority of these are not
intended to be hostile, some may be, and more
may simply be prone to errors leading to poten-
tial dangers for the unknown user.

The most important capability provided by
the Java platform and not found in most tradi-
tional programming languages is executable
program portability, which means that Java
programs written on one type of hardware or
operating system can be executed without
recompilation on almost any other type of com-
puter. However, security concerns become
especially important in such an environment
since the presence of downloaded executable
content makes the local computer vulnerable to
a potential attack from the possibly untrusted
source of the executable (Thompson, 1984).
Java proponents promise that through the new
security architecture delivered in the upcoming
Java Development Kit (JDK 1.2) Java provides a
secure environment for downloadable
executable content that under specific circum-
stances can make use of a system’s resources
without compromising their availability and
integrity (McGraw and Felten, 1996).

Not surprisingly, Java is not the only platform
providing support for portable executable pro-
grams (Thorn, 1997). The Safe-Tcl language,
which is based on Tcl (a procedural, high-level,
scripting language designed to be simple,
portable, easily embeddable, and extensible),
attempts to provide for “enabled mail” which
would allow users to send e-mail with embed-
ded Safe-Tcl executable programs (scripts).
Safe-Tcl is designed as a language that satisfies
strong security and portability constraints. It
deals with potential security problems by
restricting the behaviour of programs so that

16

Architectures for secure
portable executable
content

Stefanos Gritzalis
George Aggelis and
Diomidis Spinellis

The authors
Stefanos Gritzalis is Assistant Professor in the Department
of Informatics at the Technological Educational Institute
(TEI)of Athens, Aegaleo, Greece, E-mail: sgritz@acm.org and
also at the Department of Information and Communication
Systems, University of the Aegean Research Unit, Athens,
Greece, E-mail: sgritz@aegean.gr
George Aggelis is a Postgraduate Student in Information
Systems in the Department of Informatics at Athens Universi-
ty of Economics and Business (AUEB), Athens, Greece. E-mail:
gangel@hermes.aueb.gr
Diomidis Spinellis is Visiting Professor in the Department
of Information and Communication Systems, University of
the Aegean Research Unit, Athens, Greece. E-mail:
dspin@aegean.gr

Keywords
Computer architectures, Computer programming,
Distributed data processing, Internet, Security

Abstract
The Java programming language supports the concept of
downloadable executable content; a key technology in a
wide range of emerging applications including collaborative
systems, electronic commerce, and Web information services.
Java enables the execution of a program, on almost any
modern computer regardless of hardware configuration and
operating system. Safe-Tcl was proposed as an executable
content type of MIME and thus as the standard language for
executable contents within e-mail messages. However, the
ability to download, integrate, and execute code from a
remote computer, provided by both Java and Safe-Tcl,
introduces serious security risks since it enables a malicious
remote program to obtain unauthorised access to the
downloading system’s resources. In this paper, the two
proposed security models are described in detail and the
efficiency and flexibility of current implementations are
evaluated in a comparative manner. Finally, upcoming
extensions are discussed.

Internet Research: Electronic Networking Applications and Policy
Volume 9 · Number 1 · 1999 · pp. 16–24
© MCB University Press · ISSN 1066-2243

they have fewer capabilities than the users who
invoked them. The Safe-Tcl security model
makes it possible to implement highly restrictive
security policies for scripts of unknown origin as
well as less restrictive policies for scripts whose
authors are known and trusted.

This paper evaluates the security features
offered by the Java and Safe-Tcl programming
languages and describes the basic mechanisms
of each of the proposed security models. We
present and compare the current implementa-
tions as well as upcoming extensions of the two
security models, and evaluate their efficiency
and flexibility. Although Microsoft’s Active-X
technology also supports downloadable exe-
cutable content and is based on an interesting
security architecture it is not examined in this
article because, in its current implementation, it
is operating system and hardware specific.

The Java security model

Java was created to enable the development of
programs in a heterogeneous network-wide
environment. It allows Java-compatible Web
browsers to download code fragments dynami-
cally and then execute those code fragments on
the local machine. Executable portability,
meaning that a Java program (or applet) is
portable not only in source code but also in
compiled binary code, was therefore one of the
major design goals of Java. The Java Virtual
Machine (JVM), a system that simulates an
abstract machine, is the part of the Java-compat-
ible Web browser that provides this portability
layer (Sun Microsystems, 1997a;1997b). The
JVM architecture defines an instruction set, a
register set, a stack, a garbage-collected heap,
and a memory area. This architecture allows a
single executable to run unmodified on many
different systems. To achieve this, the Java
compiler compiles Java code to an architecture
independent object file format containing JVM
code (or bytecodes), which is then interpreted
by a processor-specific JVM implementation or
compiled on the fly into the machine code of the
particular processor.

The aim of the Java security model is to
protect users from malicious applets originating
from untrusted sources across a network. Java
provides a customisable “sandbox”, which is a
dedicated area of the Web browser within which

the actions of the applet are restricted. Within
its sandbox the applet may do anything but
access the user’s files, network connections, and
other sensitive resources. The basic idea of the
sandbox model is that programs loaded from
the local file system are executed with full access
to vital system resources, whereas executable
content downloaded from a remote source is
considered untrusted, and can therefore access
only the limited resources provided inside the
sandbox. The first release of the Java Develop-
ment Kit (JDK 1.0) was based on the above
described mechanism of the sandbox model.

Overall security is enhanced through a
number of mechanisms. First, the language
itself was designed with security in mind so that
every program that conforms to the language
specification, automatically obeys basic low
level security restrictions (Yellin, 1995). The
most important features that make the Java
language attractive as an environment to write
safe code are the lack of pointer arithmetic,
mandatory array bounds-check at runtime, the
prohibition of casts of primitive types into
reference types, and the automatic garbage
collection.

Security is provided by the JVM during the
loading and verification of the JVM code.
Applets are loaded from the network by the
applet Class Loader which receives the bytecode
instruction stream and converts it into internal
data structures that represent the applet’s class-
es. The class loader, apart from fetching an
applet’s executable content from the network,
also enforces the name space hierarchy. By
maintaining a separate name space for trusted
code which was loaded from the local disk, the
Class Loader prevents untrusted applets from
gaining access to more privileged, trusted parts
of the system.

The bytecode verifier is invoked by the Class
Loader, and before the execution of the newly
imported applet, ensures that the applet con-
forms to the specifications of the Java language,
and that there are no violations of name space
restrictions or of memory accesses. The byte-
code verifier, along with the properties of the
JVM, guarantee language safety at runtime. The
third component of the Java security model is
the Security Manager, which restricts the way in
which an applet can use visible interfaces by
performing run-time checks on dangerous

17

Architectures for secure portable executable content

Stefanos Gritzalis, George Aggelis and Diomidis Spinellis

Internet Research: Electronic Networking Applications and Policy

Volume 9 · Number 1 · 1999 · 16–24

methods such as those for file or network access.
The JVM consults the Security Manager when-
ever such a dangerous operation is about to be
attempted. The Security Manager then has a
chance to veto the operation by generating a
security exception. Actions of a piece of untrust-
ed code are therefore restricted to the minimum
thanks to these checks performed in advance by
the Security Manager.

The concept of digital signatures was adopt-
ed by the Java security model with the second
release of the Java Development Kit (JDK 1.1).
Until then, downloaded executable content was
considered to be untrusted, unless it was down-
loaded from the file system of the local disk.
Consequently, all applets obtained from the
open network could access only the limited
resources provided inside the sandbox. It was
not until in JDK 1.1 that JVM became capable
to distinguish between untrusted and trusted
remote executable code. The concept of cor-
rectly digitally “signed applet” was then intro-
duced that allowed a remote applet to be treated
as if it is trusted local code. The Java Archive
(JAR) file format, which consists of the widely
used ZIP format plus some meta-data files, is
used to deliver the signed applets along with
their signatures. Unsigned applets are treated as
untrusted applets so their execution is still
encapsulated by the sandbox.

With the upcoming JDK 1.2, Java will move
away from the sharp distinction between applets
that run in a browser’s “sandbox” and are thus
denied all access to the resources of the host
operating system versus applications that have
unrestricted access (Gong et al., 1997; Lind-
horn and Yellin, 1997). The security enhance-
ments that are introduced by the JDK 1.2,
including a simpler policy configuration, an
extensible access control structure, and an
extension of the security checks performed over
all forms of Java programs (applications and
applets), were designed to give developers more
control over their applications. The security
policy introduced consists of a mapping
between properties of the running code (the
URL of the code and the code signature) and a
set of permissions granted to the code. The
permissions a piece of code is entitled to are
computed as the sum of permissions each signa-
ture that the piece of code carries. To accom-
plish this goal a simple configuration language

for statement of policy constraints has been
defined and can be used. Before a controlled
resource is to be accessed, an access control
decision is made, based on the permissions of
the executing code.

JDK 1.2 also introduces the concept of a
protection domain. This is defined to be a set of
all the objects that correspond to a principal;
where a principal is an entity in the computer
system to which authorisations are granted
(Gong and Scemers, 1998). In JDK 1.2 permis-
sions may no longer be granted to classes but to
protection domains, with every class belonging
to one domain only. If a thread transverses more
than one domain while executing, the permis-
sions it is entitled to are computed based on the
principle of least privilege. In case there is a
need for communication between different
domains it may be performed either indirectly
through system code, or directly, provided that
all participating domains allow it.

JDK 1.2 introduces a new class called
AccessController which makes it easier for the
code to learn the status of all its callers and
perform access controls. The only thing the
programmer has to do is call the checkPermis-
sion method of this class, having the system
itself perform the access control. For backward
compatibility reasons, the SecurityManager
usage is still allowed. In order to distinguish
between system classes and remote classes and
impose the proper security policy, the Classs-
Loader class has been replaced by the Secure-
ClassLoader. Furthermore, a new class called
Java.security.Main has been introduced in order
to impose the security policy to locally installed
applications.

The Safe-Tcl security model

Safe-Tcl is an extension of the Tool Command
Language (Tcl) (Ousterhout, 1994). Developed
by Marshall Rose and Nathaniel Borenstein,
Safe-Tcl is a secure version of Tcl used for
executing scripts on the Internet. Tcl is a script-
ing language which is typically used to glue
together building blocks written in system
programming languages like C, C++, and Java.
It is easy to embed Tcl into a legacy program to
add scripting features or a GUI interface.

Safe-Tcl’s syntax is identical to the syntax of
Tcl, since the former is in essence an extended

18

Architectures for secure portable executable content

Stefanos Gritzalis, George Aggelis and Diomidis Spinellis

Internet Research: Electronic Networking Applications and Policy

Volume 9 · Number 1 · 1999 · 16–24

subset of the latter. Specifically, the features in
Tcl considered to endanger the local system
have been removed, while several new features
considered as trusted under all security policies
have been added.

Safe-Tcl, like several other languages includ-
ing Java, deals with address-space protection by
doing without C-style pointers and by enforcing
bounds checking in array references. Moreover,
storage management is handled automatically
by the Tcl interpreter. An interpreter encapsu-
lates completely the execution of a Tcl script.
Consequently, the facilities available to a Tcl
script are determined by the set of commands
that its interpreter contains.

Safe-Tcl deals with security by controlling
the execution of Tcl scripts (tclets) using a
padded cell approach. This control is accom-
plished using safe interpreters, which restrict
the commands available to an applet, and alias-
es, which allow controlled access to unsafe
commands. An application such as a Web
browser can have more than one Tcl interpreter.
A script can only invoke the commands and use
the variables available in the interpreter it runs
on, each interpreter having its own set of com-
mands and variables. The scripts that are con-
sidered to be trusted, either because they are
residing on the local host, or because they origi-
nate from a trusted source, are executed in a Tcl
interpreter called the “master” (or “trusted”)
interpreter, which contains the full set of all
Tcl’s commands. Scripts that are thought to be
untrusted, such as the ones on a Web page
downloaded from an unknown host across the
network, are executed in a new separate Tcl
interpreter created by the application. This
interpreter is called the “slave”, or “untrusted”
interpreter, or padded cell. All commands that
could result in endangering the system’s securi-
ty, such as those for reading and writing files,
are made inaccessible to those scripts (they are
removed from the slave interpreter), and thus
only a limited set of safe commands (the safe
base) is available. The above mechanism is also
called the dual-interpreter mechanism.

The padded-cell approach is similar to the
kernel and user space distinction in modern
operating systems. Programs running under the
slave interpreter are similar to user space
processes in an operating system which cannot
access the disk directly. The master interpreter,

having unrestricted power to do anything, is
much like the operating system kernel;
code running under its privileges has to be
trustworthy.

The basic mechanism provided by Safe-Tcl
which allows a slave interpreter to make
requests from its master is called aliases.
Through this mechanism, Safe-Tcl provides
restricted access to features that are essentially
unsafe; untrusted code is allowed to communi-
cate outside its padded cell in a carefully con-
trolled way. As an example, a slave interpreter
wanting to access a limited number of files
within a single directory may be provided with
an alias (or “safe call”) enabling it to make this
access in a controlled way. An alias is, in fact,
the association between a command in the
untrusted interpreter and another in the trusted
interpreter. Whenever the former command is
invoked by a script running within the untrusted
interpreter, the latter is the one that is actually
executed instead. The master interpreter has
complete control over the safe calls in a slave
interpreter, and can provide different sets of safe
calls depending on what it knows about the
script. As an example, if one script is more
trusted than another (originating from a more
trusted source), then it may be given a more
comprehensive set of safe calls than the untrust-
ed one. Furthermore, it is the master inter-
preter’s responsibility to create and delete alias-
es as well as any other variable of the slave inter-
preter, and to define the source and destination
of each safe call (i.e. which command of the
slave is going to be substituted, and which one
from the master interpreter will be invoked
instead).

The commands that are made inaccessible to
the safe interpreter are not actually removed
from it. Instead, they are hidden, making it
impossible for the untrusted interpreter to
invoke them. As the master interpreter has
complete control over the instruction set of the
slave interpreter it is able to invoke its hidden
commands. This architecture ensures that
restricted commands are executed within the
correct environment, i.e. that of the untrusted
interpreter. The fact that the Tcl code needed to
implement the security restrictions usually
consists of just a few lines makes it easy for
security analysts to test the code and fix any
bugs or “holes” they may find.

19

Architectures for secure portable executable content

Stefanos Gritzalis, George Aggelis and Diomidis Spinellis

Internet Research: Electronic Networking Applications and Policy

Volume 9 · Number 1 · 1999 · 16–24

One of the strengths of Safe-Tcl is that it
permits a variety of security policies. A security
policy in Safe-Tcl consists of the commands
available in safe interpreters using the policy,
including both the safe base and any aliases.
The simplest security policy consists of the safe
base with no aliases at all. If the Tcl script is
trusted, it might be given a security policy that
restores the full set of Tcl commands. At the
other extreme, highly sensitive environments
might use security policies that hide some of the
commands of the safe base.

Java security extensions and
implementations

The new security model proposed by the JDK
1.2 provides fine-grained access control, easily
configurable security policies, a more extensible
but simplified access control structure, and
enforced security checks to any kind of Java
software. The capability of fine-grained access
control existed in previous releases of JDK, but
the application programmer could not use it
unless he/she did substantial programming
(mainly by subclassing and configuring the
SecurityManager and ClassLoader classes
which implement security restrictions and class
loading over the network). The problem with
such code is that it is extremely security-
sensitive and requires sophisticated skills and
in-depth knowledge of computer security. The
new mechanism makes this process far simpler
and thereby safer.

The capability of a configurable security
policy existed in previous versions of JDK, but it
was not as easy to use as it is under JDK 1.2.
Being aware that writing security code is not
straightforward, the JDK 1.2 implementers
allow application builders and users to config-
ure security policies without having to develop
specific programs.

Before JDK 1.2, in order to create and use a
new access permission one had to add a new
check method to the subclassed Security-
Manager class. The new architecture introduces
an easily extensible access control structure
allowing customised, typed permissions (each
representing an access to a system resource) and
the automatic managing of all permissions of
the correct type. With the new security

mechanism, in most cases, no new method in
the SecurityManager needs to be defined.

Until now, one of the most common security
concerns about the Java security model had to
do with the concept that all local code was
considered to be trusted. In the new security
model, local code (e.g. non-system-code, appli-
cation packages installed on the local file
system) is subjected to the same security control
as applets, although it is still possible to declare
the policy on local code to be less restrictive,
thus enabling such code to be trusted. The same
extensions of security checks are now applied to
all Java programs including applications as well
as applets.

A protection domain is a vital component of
the new model forming the basis for making
access control decisions. It serves as a conve-
nient mechanism for grouping and isolation
between units of protection. There are two
distinct categories of protection domains:
(1) the system domain; and
(2) the application domain.

Only system domains can access all the protect-
ed external resources (file system, network
connections, and input/output functions). It is
through the system’s security policy that the
user or the system administrator specifies which
new protection domains should be created and
what permissions should be granted to them. In
JDK 1.2 permissions are granted to protection
domains, and classes and objects are granted
the permissions of the domain to which they
belong. The Java runtime maintains such a
mapping from code (classes and objects) to their
protection domains and to their permissions. It
is important to ensure that at any time the appli-
cation domain does not gain additional permis-
sions while calling the system domain (or any
other domain that is granted more permissions
than the calling one). When access to a critical
system resource is requested at runtime, a
special AccessController is directly or indirectly
invoked by the resource-managing code that
evaluates the request and decides whether the
request should be served or thrown away. Evalu-
ating the request means examining the call
history and the permissions granted to the
relevant protection domains.

From the above description it becomes
apparent that there is a clear intention to move

20

Architectures for secure portable executable content

Stefanos Gritzalis, George Aggelis and Diomidis Spinellis

Internet Research: Electronic Networking Applications and Policy

Volume 9 · Number 1 · 1999 · 16–24

from a black-and-white security model to a new
configurable one that promises to give develop-
ers more control over their applications.
Developers and network administrators will be
able to assign varying degrees of access to any
kind of Java software based on code signatures.
Consequently, Java will move away from the
sharp distinction between completely restricted
applets and applications free to do whatever
they want.

To accomplish this goal, JDK 1.2 features
additional security tools, providing support for
digital signatures to ensure authentication and
integrity, message digests, key management,
certificate management, and access control
(Sun Microsystems, 1997c). The new keytool
and jarsigner tools replace javakey, which was
used in JDK 1.1 applications for key and certifi-
cate generation and management. The new
tools provide more features than javakey,
including the ability not only to generate digital
signatures but also to verify them. The identity
database that javakey created and managed is
replaced by the new keystore architecture. A
keystore is a protected database that holds keys
and certificates for an enterprise. For backward
compatibility reasons, it is possible to use the
keytool command to import the information
from an identity database into a keystore.

Keytool can be used to create public/private
key pairs and self-signed X.509v1 certificates
used to digitally sign Java applications and
applets and to manage keystores. Access to a
keystore is guarded by a password defined at the
time the keystore is created by the person who
creates the keystore and altered only when
providing the current password. In addition,
each private key kept in a keystore can be
guarded by its own password.

The jar tool, which was also available in JDK
1.1, is used to create JAR files. To sign an applet
the producer first creates a JAR file and a digital
signature based on the contents of the JAR. The
jarsigner tool, used to sign JAR files or to verify
signatures on signed JAR files, accesses the
keystore when it needs to find the private key to
use when signing a JAR file. Since accesses to
the keystore and to private keys kept there are
guarded by passwords, only users knowing the
passwords can access a key and use it to sign a
JAR file. One other new tool available in JDK
1.2, called policytool, is a graphical user

interface used to create and modify the external
policy configuration files that define the
system’s Java security policy.

The Java cryptography architecture refers to
the framework for accessing and developing
cryptographic functionality for the Java plat-
form. The official Java implementation by Sun
includes an implementation of the NIST DSA
algorithm, the MD5, and SHA message digest
algorithms (Schneier, 1996). In addition, since
the ability to encrypt data before being trans-
ferred is critical, APIs for data encryption are
contained in a Java cryptography extension as
an additional package to JDK 1.2.

An important enhancement to the proposed
security model would be a configurable audit
system allowing system administrators to
study the circumstances under which security
breaches occurred.

The methods and tools needed to define a
system-wide policy have not been developed
yet. It is up to the user to define the policy used
against a certain piece of Java code based on its
digital signatures. The end-user should be able
to see and define only part of the policy
enforced on a piece of Java code. In an organisa-
tion, an enterprise-wide policy should be
designed by the network administrators. Within
the environment of such an organisation, a
central repository could be used to store the
security policy. The latter should be formed by
three entities:
(1) an organisation-wide policy made by the

network administrator;
(2) a local policy by the administrators of the

local networks of the organisation; and
(3) the end user.

The policy each of these entities will define, will
be based on the signer of Java code and on the
certificate authority which certifies the signer’s
signature.

Safe-Tcl security extensions and
implementations

The intent of the Safe-Tcl language design is
that it should be essentially harmless to evaluate
a Safe-Tcl program that comes from an
unknown or hostile sender. In Safe-Tcl, an
untrusted script is isolated in its interpreter
context, much like a Java applet is isolated in its

21

Architectures for secure portable executable content

Stefanos Gritzalis, George Aggelis and Diomidis Spinellis

Internet Research: Electronic Networking Applications and Policy

Volume 9 · Number 1 · 1999 · 16–24

sandbox, having the capability to invoke a few
extra commands that are carefully implemented
by another interpreter to ensure safety. The set
of these extra commands, the exposed aliases,
and their implementation make up a security
policy in Safe-Tcl. Rather than adopting a single
security policy, Safe-Tcl allows different securi-
ty policies for different applets, resulting in
added flexibility in function and levels of trust,
but at the same time increasing the possibility
for additional loopholes from the additional
complexity. Added flexibility means that an
application can choose exactly how much trust
to place in the applet by choosing from a variety
of security policies. Completely untrusted code
might be executed in the safe base without the
added functionality of any aliases at all, whereas
fully trusted applets could be executed with
unrestricted access.

The presence of multiple security policies
with their inevitable flaws and interactions
introduces additional complexity which can be a
source of loopholes that may be both hard to
predict and hard to prevent. However, careful
design and implementation of such a system can
often reduce security risks to an acceptable
level.

The Safe-Tcl environment is easily exten-
sible. However, this should be done with great
caution, since the introduction of a new Safe-
Tcl command can have serious security implica-
tions. Whenever a new command is added, the
author should consider whether hostile parties
could use this command to cause any harm. In
order to make an extension to the Safe-Tcl, one
writes a procedure in full Tcl, to be interpreted
by the trusted Tcl interpreter. This particular
command may then become available in the
untrusted interpreter using the declareharmless
primitive. Furthermore, expressions may be
evaluated in the untrusted interpreter by using
the restrictedeval primitive.

Writing a security policy is a complex effort
that should not be undertaken lightly. It involves
careful design, exhaustive testing, public review
and analysis, and continuous debugging. Imple-
menters have to consider what features a secur-
ity policy should provide while balancing the
security risks to which an application using the
policy will be exposed. A security policy is a Tcl
script or a shared library that is loaded into an

unsafe master interpreter. It consists of two
parts:
(1) a management part, concerned with

installing the policy into safe slaves and
cleaning up any associated state when a
slave is destroyed; and

(2) a runtime part, concerned with actually
implementing the features of the policy.

Safe-Tcl uses a platform-dependent mechanism
for obtaining the initial setting for the search
path for finding security policies.

Safe-Tcl scripts start executing on the safe
base. If they need access to unsafe features,
tclets can request to use a named security policy
by invoking the package with the policy name
required. If the request is denied by the applica-
tion’s trusted interpreter an error is returned.
The tclet can catch the error and request to use
a different named policy, granting less permis-
sions, until a request is accepted. A tclet can
only use one security policy during its lifetime.
Once an invocation of the package required to
load a security policy succeeds, Safe-Tcl pre-
vents subsequent invocations of a security
policy. These restrictions are designed to pre-
vent a tclet from composing security policies
either concurrently or sequentially in ways not
supported or foreseen by the authors of the
policies. Allowing such composition would
expose the application to unknown security
risks.

The Safe-Tcl extension has been available as
part of the Tcl since the Tcl 7.5 release. Forth-
coming releases will include standard authenti-
cation and encryption mechanisms to prevent
denial-of-service attacks. A variety of authenti-
cation mechanisms exist for verifying the origin
of a mobile code segment, most of which involve
encryption of some sort. The same mechanisms
can also be used to distribute new security
policies. For example, an untrusted tclet may
carry an encrypted trusted security policy with
it so that when an application executes the tclet
it can safely load the security policy even though
it does not trust the tclet. Safe-Tcl mechanisms
can also be used to prevent denial-of-service
attacks. Safe-Tcl’s approach to CPU resource
usage involves the invocation of a scheduling
function in the trusted interpreter once the
untrusted interpreter has executed a predefined
number of commands which can abort the tclet.

22

Architectures for secure portable executable content

Stefanos Gritzalis, George Aggelis and Diomidis Spinellis

Internet Research: Electronic Networking Applications and Policy

Volume 9 · Number 1 · 1999 · 16–24

For interactive applets the scheduling function
can check to see if the kill key has been pressed,
whereas for non-interactive applets the schedul-
ing function can implement an upper limit on
CPU usage and on memory allocation.

Conclusions

The popularity of the World Wide Web has had
a significant impact on the usage of download-
able executable content attracting considerable
interest throughout the Internet community.
The two languages that have been described
seem to have an edge over other programming
languages for portable mobile code in terms of
security, since they both make it possible to
create environments where applets with differ-
ent levels of trustworthiness can be executed
with an acceptable level of risk. The security
features of both languages function indepen-
dently of trust placed on the imported code. In
the anarchic environment of the Internet this is
an important advantage over languages, such as
O’Caml and Limbo, and technologies, such as
Active-X, whose security model depends on
object code signed by a, presumably, trusted
party.

The flexible security policy introduced in
JDK 1.2 provides an integrated method in order
to grant specific permissions to applets based on
the signatures carried by them. The JDK 1.2,
with the new protection mechanisms of security
policy, access permissions, protection domains,
and access control checking introduces a flex-
ible security model. Java is definitely moving
away from the restrictive black-and-white
security model of the “sandbox” towards a
configurable mechanism which gives developers
and administrators fine-grained control over
their systems and applications. The Safe-Tcl
security model is also introducing an approach
whose main benefit is the added flexibility in
function and levels of trust: rather than adopting
a single security policy, Safe-Tcl allows different
security policies for different applets.

As far as security is concerned, Java work has
concentrated on providing a granular and com-
plete security framework which can be applied
in a variety of contexts, whereas Safe-Tcl has
focused on security in the specialised context of
e-mail. Moreover, those who vote for Java claim
that the security model it offers is more

complete than the one proposed by Safe-Tcl,
since mechanisms like namespace protection
and bytecode compilation go a long way
towards safety and efficiency (Weiss et al.,
1996).

However, Safe-Tcl has some advantages over
Java that simplify the creation of safe environ-
ments. One advantage lies in the simplicity of
the proposed model which may be considered as
a generalisation of the user space-kernel space
model that has been used successfully in operat-
ing systems for several decades (Gritzalis,
1991). Furthermore, security policies are separ-
ated into well-defined modules that do not
depend on host applications or on untrusted
applets, making it easier to analyse the proper-
ties of a security policy and to reuse policies.

Ultimately, a choice between the two lan-
guages will depend more on the application
domain and the respective inherent features of
each language and less on its approach towards
security. Java’s execution environments featur-
ing aggressive optimisation techniques such as
just-in-time compilation and native method
interfaces provide Java with a distinct efficiency
advantage over Safe-Tcl. In addition, Java’s
object-orientation, rich class libraries, com-
ponents framework, and support for concurren-
cy and internationalisation make it the language
of choice for large mission-critical or retail-
market applications. Its safety-model blends
nicely with the requirements of those applica-
tions since the configurable security policies
applied to respective protection domains corre-
spond to the requirements of enterprise-wide
security management. Java’s heavyweight lan-
guage and security architecture provides Safe-
Tcl with a clear ecological niche: application
extensions, scripting, rapid prototyping, and
user interfaces. Safe-Tcl’s small footprint,
flexibility, and expressiveness are the exact
features required in the above named areas. The
ability to write in Safe-Tcl specialised security
policies in the same language as the application
is the appropriate approach for the respective
application areas.

It is interesting that the Sunscript group is
working on Tcl-Java integration, since Tcl has
several properties that nicely complement Java.
Two new products were recently released
named Jacl and Tcl Blend (Stanton, 1998;
SunMicrosystems, 1997d). The first is a new

23

Architectures for secure portable executable content

Stefanos Gritzalis, George Aggelis and Diomidis Spinellis

Internet Research: Electronic Networking Applications and Policy

Volume 9 · Number 1 · 1999 · 16–24

Java implementation of Tcl 8.0, that can be used
to write extensions for Tcl in Java code that will
run on UNIX, Windows, and the Macintosh
platforms. Taking advantage of the capabilities
that the reflection classes in JDK 1.2 offer,
TclBlend provides a dynamic interface to Java.
The second is a new package for Tcl 8.0 that
allows loading and interacting with the JVM
(running in a Java only environment). It is very
possible that this kind of integration will lead to
a security integration as well, since both lan-
guages have a built-in security model, the com-
bination of which may be used to have more
complete control over mobile code.

References

Gong, L., Mueller, M., Prafullchandra, H. and Schemers, R.
(1997), “Going beyond the sandbox: an overview of
the new security architecture in the Java Development
Kit 1.2”, Proceedings of the USENIX Symposium on
Internet Technologies and Systems, USENIX Associa-
tion, Monterey, CA, pp. 103-12.

Gong, L. and Scemers, R. (1998), “Implementing protection
domains in the Java Development Kit 1.2”, Proceed-
ings of the Symposium on Network and Distributed
System Security, online, http://isoc/NDSS98/

Gritzalis, D. (1991), Information Systems Security, GCS
Publications, Athens.

Lindhorn, T., and Yellin, F. (1997), The Java Virtual Machine
Specification, Addison-Wesley, Reading, MA and
Wokingham.

McGraw, G. and Felten, E. (1996), Java Security Hostile
Applets, Holes and Antidotes, J. Wiley & Sons Inc.,
New York, NY.

Ousterhout, J. (1994), Tcl and the Tk Toolkit, Addison-Wesley,
Reading, MA and Wokingham.

Schneier, B. (1996), Applied Cryptography, J.Wiley & Sons,
New York, NY.

Stanton, S. (1998), “TclBlend: Blending Tcl and Java”, Dr.
Dobb’s Journal, Vol. 23 No. 2, pp. 50-4.

Sun Microsystems, (1997a), “Frequently asked questions –
applet security”, online, http://Java.sun.com/sfaq/

Sun Microsystems, (1997b), “Secure computing with Java:
now and the future”, online, http://Java.sun.com/mar-
keting/collateral/security.html

Sun Microsystems, (1997c), “Security in JDK 1.2”, online,
http://Java.sun.com/docs/books/tutorial/security 1.2/

Sun Microsystems, (1997d), “Jacl and Tcl blend”, online,
http://sunscript.sun.com/Java/

Thompson, K. (1984), “Reflections on trusting trust”, Com-
munications of the ACM, Vol. 27 No. 8, pp. 761-3.

Thorn, T. (1997), “Programming languages for mobile code”,
ACM Computing Surveys, Vol. 29 No. 3, pp. 213-39.

Weiss, M., Johnson, A. and Kiniry, J. (1996), “Security fea-
tures of Java and HotJava”, Open Software Foundation
Research Institute, online. htpp://user/cs.tu-berlin.
de/~majo/java/security.htm

Yellin, F. (1995), “Low level security in Java”, online. http:
//Java.sun.com/sfaq/verifier.html

24

Architectures for secure portable executable content

Stefanos Gritzalis, George Aggelis and Diomidis Spinellis

Internet Research: Electronic Networking Applications and Policy

Volume 9 · Number 1 · 1999 · 16–24

