
A Critique of the Windows
Application Programming Interface

Diomidis Spinellis
University of the Aegean

83200 Karlovasi
Greece

email: dspin@aegean.gr

December 1997

Abstract

The architecture, interface, and functionality of the Win-
dows Application Programming Interface (API) make it dif-
ficult to master and use effectively, and contribute nega-
tively to the safety, robustness, and portability of the ap-
plications developed under it. The API is structured around
a large and constantly evolving set of functions and is based
on a problematic shared library implementation. The pro-
vided interfaces are complicated, non-orthogonal, abuse the
type system, cause name-space pollution, and use incon-
sistent naming conventions. In addition, the functional-
ity of the interface suffers from inconsistency, incomplete-
ness, and inadequate documentation. Application develop-
ers, programming tool vendors, and Microsoft should face
the above problems and provide appropriate solutions.

Keywords: Microsoft Windows; Application Program-
ming Interface; Win32

1 Introduction

Microsoft Windows 95 and Windows NT (from now
on referred-to as “Windows”) are increasingly becoming
widely adopted as operating system platforms for desktop
applications, back-office servers, and research [1]. Their
programming interface, currently distributed and docu-
mented as the “Microsoft Platform Software Development
Kit” [2] (SDK), provides a set of functions, data types, struc-
tures, macros, and tools for writing user and system soft-

Computer Standards & Interfaces, 20:1–8, November 1998.
This is a machine-readable rendering of a working paper draft that led

to a publication. The publication should always be cited in preference to
this draft using the reference in the previous footnote. This material is
presented to ensure timely dissemination of scholarly and technical work.
Copyright and all rights therein are retained by authors or by other copy-
right holders. All persons copying this information are expected to adhere
to the terms and constraints invoked by each author’s copyright. In most
cases, these works may not be reposted without the explicit permission of
the copyright holder.

ware to run under Windows. Although application writers
can be isolated from the SDK by using libraries, scripting,
visual and fourth-generation languages, or utilising pro-
grammable components, ultimately the SDK provides the
operating system interface thus affecting the robustness,
portability, performance, safety, and ease of Windows pro-
gramming.

The first versions of Windows provided a graphical envi-
ronment to the MS-DOS operating system. The current ver-
sions of Windows provide a 32-bit graphical, multi-tasking,
networked operating system [3] used by thousands of work-
station and server applications. The core SDK Application
Programming Interface (API) covers an extremely broad
area providing the interfaces listed bellow.

Input and output devices: mouse, keyboard, pen, screen,
printer, and sound.

User interface elements: windows, menus, dialogs, input
widgets, the clipboard, and internationalisation func-
tions.

System services: files, memory, hardware, system
databases, and networking.

Graphical elements: bitmaps, fonts, drawing primitives,
area management functions), and 3D graphics render-
ing.

An additional number of APIs are provided and docu-
mented as part of the Windows Platform SDK. The use of
some of them is required in order to develop an application
that will satisfy the licensing requirements of Microsoft’s
“Designed for Windows NT and Windows 95” Logo Pro-
gram. These APIs cover the following areas:

the Microsoft’s Component Object Model (COM), Ob-
ject Linking and Embedding (OLE), application au-
tomation, and ActiveX,

shell interfacing,

1



telephony interfaces (TAPI),

remote access services and procedure calls (RPC),

Internet networking, W3 server interfacing (Winsock,
ISAPI),

messaging (MAPI), and

game applications (DirectX 2).

The Windows platform SDK also documents a number of
interfaces for entities that are not yet part of the standard
Windows distributions such as the Microsoft SQL, Transac-
tion, and Exchange servers, the management console and
clustering interfaces, the Win32 Internet functions, and the
Open Database Connectivity Interface (ODBC). Although
many of the shortcomings of the basic Windows API are
also evident in the above mentioned interfaces, we will not
cover these in this article.

The Windows interface is specified using C language
bindings, although due to the nature of its implementation
— as a set of shared libraries callable using the calling
convention commonly associated with Pascal programs —
many of its functions are accessible from other languages
and programming environments.

In this article we will critically examine the architecture,
interface, and functionality of the Windows API and point
to a number of problems associated with it. We will argue
that because of these problems the Windows interface:

is difficult to master and use effectively,

can be used to distort competition in the marketplace,

contributes negatively to the safety, robustness, and
portability of the applications developed under it.

The remainder of this article is structured as follows:
in the next section we examine the API’s structure, size,
and implementation looking on how these affect software
development, reliability, and marketplace competition. In
section 3 we examine the interface provided by the Win-
dows API and identify problems related to the complexity
and non-orthogonality of the provided interfaces, the type
system, name-space pollution, inconsistent naming conven-
tions, and portability. In section 4 we look beyond the in-
terface into the actual functionality provided by the API and
provide examples of inconsistency, inadequate documenta-
tion, and incompleteness. Finally, the last section contains
proposals on how application developers, programming tool
vendors, and Microsoft should handle the identified API

problems.

Element Number

Number of root header files 129
Number of import libraries 48
Total number of header files 232
Header file size (Mb) 5.2
Header file lines (non empty non comment) 120516
Macro and constant definitions 33174
Type definitions 4858
Functions 3433
Interface methods 1462
Messages 858
Notification messages 180
Structures 1077
Properties 498
Enumeration types 110
Function error codes 1137

Table 1: Win32 API key metrics

2 Size, Structure, and Implementa-
tion

The Windows API is accessed through a very large and com-
plicated set of elements. Its size is difficult to judge because
what exactly constitutes it is far from clear. The Windows
SDK definition and its contents change rapidly according to
Microsoft’s strategic and marketing interests. As an exam-
ple the October 1996 edition of the Microsoft Development
Library documents the Internet Server API (ISAPI) as part
of the Win32 Software Development Kit (SDK), but docu-
ments other server related APIs (such as the Open Database
Connectivity — ODBC — API) as separate entities. The
April 1997 version of the Microsoft Development Library
documents all Windows interfaces under the roof of a sin-
gle “Platform SDK”.

In this article we will consider the Windows API (Win32)
to consist of the items supplied as parts of Microsoft’s
Win32 Software Development Kit. The POSIX subsystem
of Windows NT, although part of the Win32 SDK, is sepa-
rately installed and documented; for this reason we will not
consider it as part of Win32.

A file (WIN32API.CSV) supplied together with the Win32
SDK lists 9067 API elements (functions, interface methods,
structures, messages, macros, properties, etc.) This num-
ber although large does not include about 29000 constant
definitions (constants defined using the #define mechanism
of the C preprocessor) and about 4800 type definitions (C

typedefs) that can be found by going through all C header
files that are part of the SDK, nor does it include the Uni-
code, ASCII, and character set neutral function forms. A
summary of some key metric sizes of the Win32 API is pro-
vided in Table 1.

2



The large size and monolithic nature of the Win32 API

negatively affect a number of areas related to software de-
velopment. The huge number elements comprising the API

make it difficult to master it and use it effectively. As a re-
sult the productivity of application architects, software de-
velopers, and maintainers is negatively affected.

In addition, the creation of systems providing the same
services on different platforms is difficult, and, given the
rapidly evolving nature of the API, could well be impossi-
ble. In the past, major advances in research and develop-
ment of new hardware and operating system architectures
such as the RISC processors and microkernels were lever-
aged on the ability to provide a Unix-like environment on
top of the new architecture. With the domination of the
Windows API new hardware and software architectures, in
order to be accepted, will need to support the Windows API.
Microsoft’s exclusive control of the API can distort compe-
tition and market diversity.

Finally, given the size of the API, any formal proof of
specific properties or the correctness of programs using it is
an extremely difficult task. As a result, either the reliabil-
ity of life-critical software will suffer, or such software will
be developed, maintained, and operated in an environment
isolated from the rest of the mainstream software. This will
have important cost and interoperability consequences.

Apart from its large size, one other problem related to the
API structure is its reliance on a shared library system, the
Windows Dynamic Linked Libraries (DLLs). The current
implementation of the API and its binding mechanism pro-
vide no version and interfacing control over the applications
that use DLLs and the libraries they are linked to. Although
DLLs can be associated with a version number, at a given
time only a single version of a DLL can be loaded on the
system. As a result major library interface changes, such as
the transition to 32 bit code, rely on a haphazard mixture of
simple renaming and replacing of library modules for satis-
fying the new linkage requirements. One exemplar result of
this simple-minded approach is that application installation
disks created with the Visual Basic 3.0 development envi-
ronment on a Windows 95 platform will destroy the setup of
a Windows 3.1 platform when an installation is attempted.
In other cases where compatibility with older software had
to be preserved, as was the case with the introduction of the
Jet 2.0 database engine, a complicated set of new library
modules and stubs had to be correctly installed for the sys-
tem to function.

In addition to the above, the monolithic structure and
large size of the API contribute to name-space pollution
problems that it creates. Any non-trivial Windows appli-
cation will need to include the windows.h header file which
in turn includes more than 60 other header files comprising
more than 70000 lines of C declarations and macro defini-
tions.

3 Interface

The provided functions have a complex and non-intuitive
interface with a number of mode changing flags and excep-
tions that unnecessarily complicate system application de-
velopment. Space restrictions do not allow us to provide a
detailed example; interested readers are encouriaged to dis-
cover for their own edification the three different ways in
which a read-only mode can be specified using the seven
parameters of the CreateFile function.

Despite the apparent generality of functions such as Cre-
ateFile it would be a mistake to think that the Windows
API provides a small set of generalised functions that cover
a lot of ground by being combined in an orthogonal fash-
ion. Win32 provides 91 functions that create entities (from
CreateAcceleratorTable to CreateWindowStation. All those
functions receive parameters of different types in wildly dif-
fering order; even similar functions that provide enhanced
functionality (such as CopyFileEx) have the new arguments
interspersed with the existing ones. The return value of the
functions that create entities is also inconsistent. The fol-
lowing are representative examples of return value incon-
sistencies across functions that create different entities:

CreatePipe returns TRUE for success and FALSE on error.

CreateFile returns a handle to the file object on success
and the INVALID HANDLE VALUE constant on error.

CreateFileMapping returns a handle to the mapping ob-
ject on success and NULL on error.

CreateTapePartition returns NO ERROR on success and
one of 15 constants (ERROR BEGINNING OF MEDIA

to ERROR WRITE PROTECT) on error.

CreateHalftonePalette returns a handle to the palette ob-
ject on success and zero on error.

The complexity of the API increases even more with
the provision of 131 “extended” functions (ending in Ex)
that perform similar tasks to the original ones, but pro-
vide extended or sometimes just different functionality. For
example, the CreateWindowEx function provides an ad-
ditional parameter for specifying 21 “extended” window
styles in addition to the 139 styles (27 basic and 112 class-
dependent) allowed by the CreateWindow function, while
WriteFileEx provides the functionality of WriteFile, but is
designed solely for asynchronous operation. In addition to
the above, 1226 functions exist in three flavours according
to the character set they support: Unicode, ANSI (an 8-bit
superset of the ASCII character set), and character set neu-
tral. The Unicode and ANSI versions of the functions are
named by appending the letter “U”, or “A” respectively af-
ter the function name. The character set neutral functions
are defined as a C preprocessor macro that calls one of the
other two functions depending on the source code compila-
tion specifications.

3



3.1 Type System Problems

Although the current specification of ANSI C provides a
type system that can be used to detect many type errors at
compile time, the Windows API specification provides am-
ple opportunities to break it by specifying in a large number
of cases arguments with minimal type information associ-
ated with them.

Older releases of Windows declared the various “han-
dles” (small integer constants used for identifying operating
system entities) in a way that made them type compatible.
Thus it was possible to pass to an API function that expected
a window handle, a handle to a device context or a handle
to a brush. The situation has improved with later releases
of the Windows API which can (with the definition of the
C preprocessor’s “STRICT” symbol) perform type checking
across different types of entity handles.

Other type-related problems persist. More than 150 func-
tions pass an argument of type LPVOID or PVOID) which is a
pointer to any type, in effect short-circuiting the compiler’s
type checking system. Some of the functions (e.g. Copy-
Memory) use this argument type legitimately for providing
an interface to unstructured memory. Other functions how-
ever, typically pass a pointer of an appropriate type depend-
ing on the value of another argument. As an example the
GetTokenInformation function which is used to retrieve a
specified type of information about an access token can pass
as an argument a pointer to ten different structures (TO-
KEN USER to TOKEN STATISTICS depending on the class
of the requested token information which is also specified
as an argument.

An even worse abuse of the type system is performed
through the use of the LPARAM and WPARAM types. These
simply specify 32 bit and 16 bit values respectively which
are used (after suitable casting and without any type checks)
for any purpose. The 32 bit value is often used to pass flags,
integer values, pointers to memory, pointers to functions,
or even packed data combined into 32 bits. In the current
version of the Windows API 89 functions have an LPARAM

argument and 48 a WPARAM argument. These types are
also used for declaring structure members circumventing
the type system in one additional way. The worst offender
in this category is probably the MSG structure which con-
tains message information. The structure contains both an
LPARAM and a WPARAM which are used for different pur-
poses for each one of the 180 notification messages. When
the two structure members are not enough for passing all
the message related data LPARAM is simply used to pass a
pointer to a structure containing additional information.

One last problem with the way the API types are defined
stems from the extensive use of the WORD and DWORD

types. These are defined as 16 bit and 32 bit unsigned val-
ues and are used for passing flags and integer values. Their
definition in effect guarantees an API implementation detail
limiting the API’s portability to future architectures with a

different natural word size.

3.2 Namespace Pollution

As mentioned in section 2, the large size of the Windows
API increases the namespace pollution it creates. As the C

language provides only three types of visibility (function,
file, and global) all the API functions, types, and constants
have to be defined with global visibility. This means that
their names are exposed and can interfere with other func-
tions that the end-user application defines. The Windows
API names have no unique prefix (as do the X-Window sys-
tem API names) thus compounding the problem. Even if
an application does not use any of the thousands of names
used by the API there is no guarantee that a new version of
the API will not use a name also used by the application.
The provision of separate namespaces for structure tags and
enumeration constants by the C language does not signifi-
cantly help the namespace pollution problem, because con-
stants and macros defined using the C preprocessor mecha-
nism can potentially interfere with any other type of name.
In addition, the way C modules and libraries are usually
linked virtually guarantees that if an application defines a
global function with the same name as a Windows API func-
tion, the application’s function will simply replace the API’s
function at link time without even a warning.

3.3 Function Names and Naming Conven-
tions

The Windows API naming conventions are inconsistent
making the functions and constants hard to remember. This
problem is somehow mitigated by the excellent help avail-
able through the full text searchable hypertext pages pro-
vided my Microsoft, but is nevertheless annoying.

The capitalisation of acronyms is performed inconsis-
tently. For example, the functions belonging to the au-
dio video interleaved (AVI) function group are named pre-
fixed with an uppercase AVI (.e.g AVIFileOpen) whereas
most functions belonging to the media control interface
(MCI) function group are prefixed with a lowercase mci (e.g.
mciSendCommand), and the functions belonging to the re-
mote access service (RAS) group are prefixed with “Ras”
(e.g. RasAdminFreeBuffer). In addition, although the split-
ting of words within a function name is mostly performed
by capitalising the first character of every word (with the
first letter of the first word not capitalised when it is used
to specify a function group) a number of functions split
the words using a combination of capitalisation and un-
derscores (e.g. ImageList Add). Furthermore, some func-
tions that are inherited from other APIs such as the socket
or string handling functions have their names written using
lowercase characters.

Many function names consist of a group name, a verb,

4



and an object. Unfortunately no particular order is used
when forming the above items into a function name. Of-
ten the group to which a function belongs is prefixing the
function name as is the case in the AVI, MCI, and RAS func-
tion groups showed in the previous paragraph. In other
cases, functions that could be grouped together, start off
with a verb as is the case for functions used for manipu-
lating drawing brushes: CreateSolidBrush, FixBrushOrgEx,
GetBrushOrgEx, and SetBrushOrgEx. Some of the func-
tions are formed with the verb followed by the object (e.g.
ReadConsole, ReadEventLog), while others are formed by
an object followed by a verb (e.g. BackupRead, NetError-
LogRead).

Furthermore, a given task is not always accurately re-
flected by the name of the function that accomplishes it.
For example, in order to determine a disk volume’s sector
size the GetDiskFreeSpaceEx function has to be called.

3.4 Portability

The interface provided by the Windows API does not follow
any established API standards such as POSIX. It is there-
fore difficult to port existing system-programming applica-
tions directly to it without resorting to the use of a relatively
thick compatibility layer that isolates the application from
the Windows system. Two such layers exist today: the Win-
dows NT POSIX subsystem, and the GNU Win 32 project [4].
Both allow programs that are based on POSIX services to
compile and run, but the resulting applications are isolated
from the rest of the system in an “emulated” environment.
Furthermore, the large size and pervasive nature of the Win-
dows API makes it difficult to write applications that use the
API and can still be ported to other environments. The diffi-
cult porting experience of Microsoft’s Word program to the
Macintosh platform proves this point [5, p. 150–151].

In addition, important portability problems exist even
across the Windows systems that support the API. Of the
3433 available API functions, 45 are not supported under
Windows NT, 602 are not supported under Windows-95 (26
of them were supported after the OSR-2 release), and 2125
are not supported under Win32s (a set of drivers and library
files for Windows 3.1 that upgrade them to provide a part of
the 32 bit Windows API functionality).

The above numbers reflect functions supported by the
current versions of Windows systems. The API continu-
ously changes in important ways as new versions or even
service releases of Windows are brought out; as a result
older versions of Windows do not support the new elements.
A list of elements that were introduced across versions is
presented in Table 2. It is important to note that some of the
newer API elements can be added to older versions of Win-
dows by installing the specific components together with
the product that uses them.

Windows Release New API elements

Windows NT 3.5 488
Windows 95 1168
Windows NT 3.51 581
Windows NT 3.51 Service Pack 3 6
Windows NT 4.0 500
Windows NT 4.0 Service Pack 2 6
Windows NT 4.0 Service Pack 3 6
Windows NT 5.0 (proposed) 27

Table 2: Additions to the API over successive Windows re-
leases

4 Functionality

The functionality provided by the Windows API is in a num-
ber of cases inconsistent, inadequately documented, or in-
complete. These shortcomings directly affect the reliabil-
ity of applications developed under it. A particular exam-
ple of inconsistent behaviour is the accessibility checking
of memory addresses passed to functions. Some functions
check that the addresses are accessible (e.g. ReadProcess-
Memory) and return an error if they are not, while others
(e.g. CopyMemory, GetSystemInfo) do not perform any
such checking and will cause the calling program to fail
with a “general protection fault” if a bad address is passed
to the function.

Error handling is a particular cause of problems. Some
API functions clear the thread’s global error code variable
when they succeed while others do not. The documenta-
tion of most functions does not completely specify which
of the 1130 errors can occur in a call to that function mak-
ing it therefore impossible to anticipate them and recover
in a sensible manner. Another API functionality problem
stems from the incomplete documentation of the semantics
of many functions. As a particular example, the CreatePro-
cess function does not completely specify which of the cur-
rent process attributes are inherited by the new process.

Some functions provide extremely rudimentary, low-
level functionality imposing to the application an imple-
mentation cost that should have been covered by the op-
erating system. The handling of asynchronous input and
output operations provides a characteristic example. After
an asynchronous write operation is initiated, any modifica-
tions of its buffer can corrupt the data being written. This
design decision obviously avoids the buffer copy overhead,
but imposes to the application the cost of a complicated
dirty buffer management scheme. Even worse, if the im-
plementor does not notice this trap, the end result will be
a difficult to reproduce, non-deterministic application bug.
The operating system could easily provide more sophisti-
cated functionality using internally a “copy on write” buffer

5



management scheme.
An example of incomplete API functionality can be found

in the video capture API. Although it is possible to set
the video source using a dialog box displayed to the user
by calling the capDlgVideoSource function, doing the same
from within an application without user mediation is, as far
as we know, impossible.

The Windows API is based on an event processing model.
Applications have to continuously process events posted by
the operating system in order to exhibit the requisite live-
ness properties and be compliant with the provided inter-
face. This event model clashes with a number of applica-
tion designs, algorithms, legacy applications, and system
requirement specifications. Although the event processing
model is pervasive in the Windows API, it is not unique.
Other models for asynchronous operation have to be used
in parallel, including callbacks (application-specified func-
tions that are called by the operating system at a specific
times), and a generic blocking facility provided by the Wait-
For family of functions. The combination of these synchro-
nisation primitives with the API’s threads facility provides
fertile ground for programming situations that can lead to
a deadlock. Some examplar situations that can result in an
application or even a system deadlock are the following:

sending a message to a thread that yields control after
receiving it, either directly or by calling a dialog box
or a GetMessage function,

calling the Windows API while holding a level 3 (de-
vice) lock,

creating windows and calling the Sleep function with
an infinite delay,

calling wave (waveform audio services) output func-
tions from within a wave callback procedure, and,

failing to acknowledge an incoming dynamic data ex-
change DDE request.

5 Conclusions

In the previous sections we have described some shortcom-
ings of the Windows API. Due to the widespread deploy-
ment of Windows-based systems it is important to recognise
the problems associated with the API and deal with them at
the appropriate level.

End-user application designers and developers can shield
themselves from the direct use of the API through the use
of high level and domain specific languages and libraries
that isolate the application developer from the API specifics.
System programmers could try to isolate the API specific
part of their application or add an intermediate layer to it in
order to enhance the application’s portability and maintain-
ability.

Programming language, library, and tool vendors should
try to provide well-designed, generic, high-level function-
ality for accomplishing Windows related tasks, resisting the
current worrying trend and natural temptation to cover the
interfacing area by a cover-all Windows API gateway func-
tion.

However, the most important contribution to the Win-
dows API long-term viability must ultimately come from the
company that controls its future. Microsoft should recog-
nise its responsibility in the market place and — break-
ing away with the past — invest effort in the design of a
high-level, orthogonal, intuitive, structured, complete, and
extendable API that will cover its own and the industry’s
current and future needs. Backwards compatibility with
the current API could be provided with the development of
mapping layer libraries. The inevitable performance cost of
this change [6] can be absorbed by a single processor gener-
ation. Current experience shows that increases in processor
power are delivered as increasingly sophisticated advances
in graphical user interfaces (GUIs). Investing one genera-
tion of processor power increase in an architectural over-
haul of the API will result in a payback in increased pro-
grammer productivity, program robustness, and portability
worth more than the currently diminishing returns of GUI

improvements.

References

[1] Usenix Association. USENIX Windows NT Workshop,
Seattle, Washington, USA, August 1997.

[2] Microsoft Corporation. Microsoft platform software
development kit. Distributed through the Microsoft De-
veloper’s Network Library, July 1997.

[3] Helen Custer. Inside Windows NT. Microsoft Press,
Redmond, WA, USA, 1992.

[4] Cygnus support. The GNU Win-32 project page.
http://www.cygnus.com/misc/gnu-win32/.

[5] Michael A. Cusumano and Richard W. Selby. Microsoft
Secrets. The Free Press, 1995.

[6] J. Bradley Chen, Yasuhiro Endo, Kee Chan, David
Mazières, Antonio Dias, Margo Seltzer, and Michael D.
Smith. The measured performance of personal com-
puter operating systems. ACM Transactions on Com-
puter Systems, 14(1):3–40, February 1996.

6


