
Using Objects for Structuring Multiparadigm Programming
Environments

Diomidis Spinellis, Sophia Drossopoulou, Susan Eisenbach
Department of Computing

Imperial College of Science, Technology and Medicine
180 Queen’s Gate, London SW7 2BZ

e-mail: dds@doc.ic.ac.uk

April, 1993

Abstract

Multiparadigm programming allows the programmer to write the implementation of a system in a number of different
paradigms. We describe our approach to multiparadigm programming based on modeling programming paradigms
as object classes. In particular, objects can be used to encapsulate program modules, and classes to encapsulate their
respective paradigms. The paradigm class hierarchy can then be used to abstract common paradigm characteristics and the
call-gate, a local inter-operation abstraction can be used to flatten the class hierarchy into a collection of paradigms. We
use this object-oriented structuring mechanism to provide the base for designing multiparadigm environment generators.
In order to demonstrate our approach we develop MPSS, a multiparadigm environment generator, use it to implement
blueprint, a six paradigm programming environment, and use all its paradigms in a numerical and symbolic integration
package.

1 Introduction

The word paradigm is used in computer science to refer to a family of system implementation notations that share common
linguistic abstractions or theories. Thus, we talk about the functional, logic, object-oriented, and imperative paradigms. It
is widely accepted that different types of tasks can be best implemented in different paradigms. As an example, the logic
programming paradigm is particularly well suited for implementing expert systems, while the object-oriented paradigm
can be advantageous for graphics work. As the subparts of typical real world systems can often be best implemented in
different paradigms, a number of researchers have introduced the idea of multiparadigm programming: a programming
methodology where the virtues of different paradigms are combined to ease the system implementation task. In this
paper we will outline, how object-oriented technology can be utilised for structuring multiparadigm systems. We will first
examine the problems that a multiparadigm programming environment has to address, and explain how objects, classes
and inheritance can be used to overcome these problems. We will also describe the design and implementation of the
experimental prototype systems we built to demonstrate the viability of our approach.

2 Object Based Multiparadigm Systems

The potential advantages of multiparadigm programming can be tapped only if some significant problems are overcome.
These include the following:

Accommodation of different syntactic notations: Different paradigms typically deploy different syntactic notations.
This allows for the most suitable notation for each paradigm to be used and for the programmer to receive the

Journal of Object-Oriented Programming 8(1):33–38, March/April 1995.
This is a machine-readable rendering of a working paper draft that led to a publication. The publication should always be cited in preference to this

draft using the reference in the previous footnote. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright
and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and
constraints invoked by each author’s copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.

1

appropriate paradigm related guidance when reading the code. This makes porting code written in a given paradigm
easier.

Accommodation of diverse execution models: Different paradigms have different execution models. Almost1 all of
them can be modeled using a Turing machine; therefore they pose, in theory, no implementation problems. In
practice, the execution model of the multiparadigm system must be flexible enough to provide a base for their
efficient implementation.

Support for different implementation strategies: Some paradigms are usually implemented by being directly compiled
to target machine code, others have their code interpreted, yet others have their code translated to some abstract
machine notation and provide the abstract machine execution mechanism as part of the runtime support system.
The choice of the execution mechanism depends on the paradigm, the target architecture and space versus time
efficiency considerations. The system structure must support all these execution mechanisms to make possible an
optimum implementation.

Ability to use existing tools: Implementing a programming paradigm can be a complicated process. If the system
structure makes the use of existing tools that handle that paradigm (such as interpreters, compilers or runtime
systems) possible, then the resulting system can be implemented in less time and, by capitalising on the existing
tool investment, be more reliable and efficient.

Arbitrary paradigm mixing and matching: For a multiparadigm environment to be used by application developers, its
internal operation should be transparent, and different paradigms should be easily combined.

We decided to focus our research on the structure of multiparadigm systems. A powerful structuring mechanism can
solve many of the problems mentioned above, and create synergistic2 effects through paradigm combination. The struc-
turing mechanism that we have adopted is based on the structuring techniques deployed by object-oriented programming.
This mechanism provides the possibility of multiparadigm environment generators: tools for designing and implementing
multiparadigm programming systems. In the following sections we will expand on the way object classes can be used
to represent and encapsulate programming paradigms, and how this representation can be exploited to create flexible
multiparadigm environment generators.

2.1 Paradigms as Object Classes

A programming paradigm is really a notation for describing an implementation for solving a specific problem. This
notation may resemble the notation used by the machine that will execute the implementation or it may resemble a
more abstract notation suitable for describing implementations in that problem domain. At some point however, the
implementation will be executed on a real machine and for this reason the semantic gap between the implementation
paradigm and the programming paradigm of the target architecture must be bridged. This is usually done by an interpreter,
a compiler or a hybrid technique. We regard all these methods as linguistic transforms from the paradigm notation to the
target architecture notation. This view, although simple provides us with two insights:

1. The target architecture plays an important role when thinking of programming paradigms. The concept of the target
architecture should be an integral part of multiparadigm programming environments and not an externally imposed
specification, or an afterthought.

2. The target architecture naturally suggests a paradigm object hierarchy, with the target architecture forming and
root of the hierarchy and other paradigms forming subclasses. Subclassing is used to create new paradigms, and
inheritance to combine common features between paradigms.

It turns out that the object metaphor suits the abstraction of a “programming paradigm”, and that by using it many of
the problems outlined above can be solved.

In the following paragraphs we will examine how important aspects of object-oriented programming can be related to
programming paradigms and multiparadigm programming. We will present the elements of the equation [Weg87]:

object-oriented = objects + classes + inheritance

1An exception would be a paradigm based on real non-determinism.
2Synergy is the notion of a system having greater value than its parts.

2

and in addition present the definition of class variables, instance variables and methods [Nel91], in the context of
multiparadigm programming.

In an object based multiparadigm programming environment programming every paradigm forms a class, and every
module written in that paradigm is an object member of that paradigm’s class. Paradigms form the class hierarchy with
the target architecture being the root of it. Inheritance is used to bridge the semantic gaps between different paradigms.

2.1.1 Objects

An object can be used as the abstraction mechanism for code written in a given paradigm. Such objects need to have at
least three instance variables (figure 1):

1. Source code. The source code contained in an object is the module provided by the application programmer.

2. Compiled code. The compiled code is an internal representation of that specification (generated by the class
compilation method) that is used by the class execution method in order to implement the specification.

3. Module state. The module state contains local data, dependent on the paradigm and its execution method, that is
needed for executing the code of that object.

Every object has at least one method:

1. Instance initialisation method. The instance initialisation method is called once for every object instance when the
object is loaded and before program execution begins. It can be used to initialise the module state variable.

As an example, given the imperative paradigm and its concrete realisation in the form of Modula-2 [Wir85] programs,
an object written in the imperative paradigm could correspond to a Modula-2 module. The source code variable of that
object could contain the source code of the module, the object code variable could contain the compiled source, and the
module state variable could contain the contents of the global variables. In addition, the instance intialisation method
would be the initialisation code found delimited between BEGIN and END in the module body.

2.1.2 Classes

All classes contain at least one class variable (figure 1):

1. Class state: contains global data needed by the execution method for all instances of that class.

In addition paradigm classes contain at least four methods:

1. Compilation method. The compilation method is responsible for transforming, at compile-time, the source code
written in that paradigm into the appropriate representation for execution at run-time.

2. Class initialisation method. The class initialisation method of a paradigm is called on system startup in order to
initialise the class variables of that class. It also calls the instance initialisation method for all objects of that class.

3. Execution method. The execution method of a class provides the run-time support needed in order to implement a
given paradigm.

4. Documentation method. The documentation method provides a textual description of the class functionality. It
is used during the building phase of the multiparadigm environment, in order to create an organised and coherent
documentation system.

The compilation and execution methods also contain the machinery needed to implement the import and export call gates
described in section 2.2.

Taking as a paradigm class example, the logic programming paradigm realised as Prolog compiled into Warren abstract
machine instructions [War83], the class state variable would contain the heap,stack and trail needed by the abstract machine
In addition, the compilation method would be the compiler translating Prolog clauses into abstract instructions, the class
initialisation method would be the code initialising the abstract machine interpreter, while the execution method would be
the interpreter itself.

3

Paradigm Class 1

Superclass

Paradigm Class 1 Objects

Subclass 1 Subclass 2 Subclass 3

MethodsVariables

Source code

Compiled code

Module state

Initialisation

Variables Methods

Class state Initialisation

Compilation

Execution

Documentation

Figure 1: Programming paradigm classes and objects

2.1.3 Inheritance

Inheritance is used to bridge the semantic gap between code written in a given paradigm and its execution on a concrete
architecture. We regard the programming paradigm of the target architecture as the root class. If it is a uniprocessor
architecture it has exactly one object instance, otherwise it has as many instances, as the number of processors. The
execution method is implemented by the processor hardware and the class state is contained in the processor registers.
The compiled code and module state variables are kept in the processor’s instruction and data memory respectively.

From the root class we build a hierarchy of paradigms based on their semantic and syntactic relationships. Each
subclass inherits the methods of its parent class, and can thus use them to implement a more sophisticated paradigm. This
is achieved because each paradigm class creates a higher level of linguistic abstraction, which its subclasses can use.

As an example most paradigms have a notion of dynamic memory; a class can be created to provide this feature for
these paradigms. Two subclasses can be created from that class, one for programmer-controlled memory allocation and
deallocation and another for automatic garbage collection. As another example a simulation paradigm and a communicating
sequential processes paradigm could both be subclasses of a coroutine-based paradigm. Subclassing is not only used for
the run-time class execution methods. Syntactic (i.e. compile-time) features of paradigms can be captured with it as
well. Many constraint logic languages share the syntax of Prolog, thus it is natural to think of a constraint logic paradigm
as a subclass of the logic paradigm providing its own solver method, and extension to the Prolog syntax for specifying
constraints. A paradigm class tree based around these examples is show in figure 2.

2.2 Paradigm Inter-operation

Paradigm inter-operation can be designed around an abstraction we name a call gate. A call gate is an interfacing point
between two paradigms, one of which is a direct subclass of the other. Both can typically be implemented as methods
of the particular paradigm class. We define two types of call gates, the import gate, and the export gate. In order for
a paradigm to use a service provided by another paradigm (this could be a procedure, clause, function, rule, or a port,
depending on the other paradigm), that service must pass thought its import gate. Conversely, on the other paradigm the

4

Static M.M.

L.P.

Single Thread

C+Threads CHIP

SPARC

MirandaProlog

Simula

Pascalbased

Coroutine

FORTRAN

Constraint

Programming
Functional

Programming
Logic

CSPSimulation

Collected

Garbage

Managed

Self

Management

Dynamic Memory

Architecture
Target

Figure 2: Paradigm class tree structure example

5

Conventions
Paradigm 1.1

Conventions
Paradigm 2

E

Conventions

Conventions
Paradigm 1.1

Paradigm 1

Conventions
Paradigm 0

Conventions

Conventions

(Paradigm 0)

Paradigm 1 Paradigm 2

Architecture

Target

Linked code

I

E

E

E

I

I

I

Paradigm 1

Paradigm 0

Paradigm 1.1

Figure 3: Paradigm inter-operation using call gates

same service must pass through its export gate. The call gates are design abstractions and not concrete implementation
models. They can be implemented by the paradigm compiler, the runtime environment, the end user, or a mixture of
the three. Each paradigm provides an import and export gate and documents the conventions used and expected. The
input of the export gate, and the output of the import gate follow the conventions of the paradigm, while the output of the
export gate, and the input of the import gate, follow the conventions of the paradigms’ superclass. The target architecture
paradigm combines its import and its export gate using the linked code as the sink for its export gate and the source for
its import gate. Call gates can make the paradigm inter-operation transparent to the application programmer, and provide
global scale inter-operation using only local information.

Figure 3 illustrates an example case. Assume that a module written in paradigm 2 is using a facility implemented in
paradigm 1.1. The module written in paradigm 1.1 will export that facility (using the syntax and semantics appropriate
to paradigm 1.1) to its superclass (paradigm 1) throught its export gate, thus converting it to the data types and calling
conventions used by paradigm 1. Paradigm 1 will again pass it through its export gate, converting it to the conventions
used by paradigm 0, the target architecture. (For example the calling conventions of the Unix system, can include the
passing of parameters through a stack frame, and the naming of identifiers with a prepended underscore.) In this form the
facility will again be imported from the pool of linked code by paradigm 1 and made available to its subclasses using its
conventions. The facility can then be imported and used by paradigm 2 which can understand the calling conventions of
paradigm 1. Although during the path described the facility crossed three paradigm boundaries, in all cases the paradigm
just needed to be able to map between its calling conventions and data types and those of its superclass.

We must note at this point that the class hierarchy is not visible to the application programmer. The hierarchy is
useful for the multiparadigm programming environment implementor, as it provides a structure for building the system,
but is irrelevant to the application programmer, who only looks for the most suited paradigm to build his application. This
is consistent with the recent trend in object-oriented programming of regarding inheritance as a producer’s mechanism
[Mey90], that has little to do with the end-user’s use of the classes [Coo92].

Using to our approach, a multiparadigm programming environment consists of a set of classes, one for each paradigm.
The classes are ordered in a hierarchy whose root is the target architecture. Every class is self-contained, and only needs
to handle the calling conventions of its superclass, and provide a mechanism for interfacing with its subclasses. Code
in different paradigms is written in different source modules, which are then handled by the appropriate methods of the
respective paradigm class.

6

2.3 Multiparadigm Environment Generators

The object-oriented system structure described above, introduces the possibility of multiparadigm environment generators:
systems that can be used in order to design and implement a multiparadigm programming environment. A multiparadigm
environment generator can provide the following services:

convert a system described by paradigm objects into a multiparadigm programming environment, and

provide support for using existing tools.

The use of a multiparadigm environment generator eases the development task of multiparadigm programming
environments by reducing the development time and implementation errors. Such systems may even be used to create
specialised paradigms for one specific application. In this way a solid software engineering foundation for the concept of
“little languages” [Ben88, pp. 83-100, 128-131] can be provided.

3 Prototype Implementation

In order to demonstrate our object-oriented approach to multiparadigm programming we designed and implemented three
prototype systems. In the following sections we will describe integrator, an application written in a number of paradigms,
blueprint, the multiparadigm programming environment used to implement the integrator, and MPSS, the object-based
multiparadigm environment generator that was used to develop blueprint. The relationship of the three systems is illustrated
in figure 4.

3.1 MPSS: an Object-based Multiparadigm Environment Generator

MPSS consists of a number of separate tools that aid the implementation task of a multiparadigm programming environment.
This is consistent with the Unix philosophy of small individual tools that can be combined with each other [Rit84].

The design philosophy behind MPSS, is that of paradigm object classes, described in the previous section. Every
programming paradigm forms a class, with the target architecture paradigm being the root of the class structure tree. For
every paradigm, the implementor provides a paradigm class description file, that defines the variables and methods of
the paradigm class. This is then compiled, by the paradigm description compiler provided by MPSS, into a compiler for
that paradigm and its manual page. The multiparadigm programming environment (e.g. blueprint) user, can use that
compiler, to convert source code from the given paradigm into object code. When the source code of all paradigms has
been compiled a special link editor, the multiparadigm link editor can be invoked to link all the paradigm objects, and
associated support libraries together into a runnable system. The link editor is also responsible for initialising the classes
and their objects by calling the respective initialisation methods. Two additional tools aid the incorporation of existing
compilers into the system by detecting and “protecting” global variables and functions. In this way compilers and code
generators that use fixed names for global variables or functions can be incorporated into a multiparadigm programming
environment.

3.2 Blueprint: a Class-structured Multiparadigm Programming Environment

Blueprint is a multiparadigm programming environment, built using the MPSS tools. Its name is derived from the acrostical
spelling of the paradigms provided, 3 namely:

BNF grammar descriptions (bnf),

lazy higher order functions (fun),

unification and backtracking (btrack),

regular expressions (regex),

imperative constructs (imper) and,

3In order to find the name the Unix command “grep b /usr/dict/words | grep u | grep l | grep r | grep i | grep t”
was executed. Blueprint was selected from the 29 words that matched the specification.

7

Generator

Blueprint

Environment

Programming

Multiparadigm

Implemented using ...

Written in ...

funbtrack

regexbnfterm

imper

2 sin d 2 cos 2 sin 2 cos K

0
1

1
1 2 d 0 785398 0 001

Multiparadigm

Application

Integrator

protect

mpld instancev

wrap pdc

Multiparadigm

Environment

MPSS

Figure 4: Entity-relationship diagram of the implemented systems

8

funbtrack

regexbnfterm

imper

Figure 5: Blueprint class hierarchy

bnftermimper funbtrackregex

Figure 6: Programmer’s view of blueprint

term handling (term).

All these paradigms are provided in the form of individual paradigm compilers: tools that convert the code expressed
in a given paradigm, into object code that can be linked and executed together with code from other paradigms. In the
following sections we present the design of the system and its parts.

3.2.1 Design Objectives

Blueprint was designed as an experimental prototype system in order to prove the viability of the object-oriented structuring
methodology. Therefore our design was centered around the following objectives:

realisation of a wide variety of diverse programming paradigms, and implementation methods,

provision of a non-trivial class hierarchy, including the abstraction of common characteristics in a special superclass,

usage of all the features provided by MPSS,

incorporation of existing tools,

suitability for the implementation of a useful application, and

ability to bootstrap the system in order to test and use it as much as possible.

3.2.2 System Structure

Blueprint is designed using the MPSS paradigm class hierarchy notion. The target paradigm is the imperative paradigm
provided by the target architecture, which in our case are Sun SPARC computers. The paradigm classes that were
implemented, can be seen in figure 5. Term expressions are the natural data objects, for both functional and logic
languages; the provision of the term class is based on this observation and, in addition, provides a practical vehicle for
their implementation.

It is important to note, that the tree structure is only used in order to design and implement the system using MPSS. The
structure is transparent to a programmer using blueprint who is presented with a flat structure of all the paradigms (figure
6). In the following sections we briefly describe each blueprint paradigm.

3.2.3 Imperative Paradigm

Imper, the imperative paradigm is provided in the form of the C programming language [KR88]. It is the one closest to
the target architecture, and the calling and naming conventions of the language are used as a common interface for the
other paradigms.

9

3.2.4 BNF Grammar and Regular Expression Paradigms

The bnf (BNF-grammar) and regex (regular expression) paradigms are used to encapsulate yacc [Joh75] grammar descrip-
tions and lex [Les75] lexical analyser specifications, as objects. The main advantage of this encapsulation is the ability
to use more than a single grammar description or lexical analyser specification within the same project. This is achieved
by “protecting” the global variable and function names that yacc and lex define by prepending them their object (module)
name. Both paradigms were implemented by using the MPSS tools to create multiparadigm environment conformant
compilers out of the standard Unix yacc and lex generators. Inter-operation with the imperative paradigm is achieved by
using the standard lex and yacc interfacing conventions, as modified by the object encapsulation scheme.

3.2.5 Rule-rewrite Paradigm

Term, the term-based rule rewrite paradigm abstracts the notion of a term used by both the functional and logic programming
paradigms. Its syntax resembles that of Prolog, but it uses a deterministic rule-rewrite execution model with predefined
argument mode declarations, resembling the functionality provided by Strand [FT90]. Term is implemented in term,
imper, bnf, and regex as a compiler that translates term into C. It was bootstrapped using the SB-Prolog compiler [Deb88],
and a semi-automatic translation process. Inter-operation with the imperative paradigm is provided by documenting the
compiled form of the term “predicates” and providing access and constructor functions for the term abstract data type, in
its converted form of C structures.

3.2.6 Logic Programming Paradigm

Btrack, the logic programming paradigm provides the backtracking execution model, deep unification and syntax, associ-
ated with implementations of the Prolog programming language. It is implemented in term as an encoded token interpreter
based on a solve/unify loop [Coh85, p. 1313]. The btrack to term token conversion is performed by “compiling” the btrack
predicates into term rules. Inter-operation with term is achieved by defining the predicates that are exported using term
signatures. The btrack compiler then creates the necessary interfaces and entry ports.

3.2.7 Functional Programming Paradigm

Fun, the functional programming paradigm offers lazy higher order functions supporting currying and call-by-name,
normal-order evaluation. Its syntax resembles that of Miranda [Tur85] omitting the guard and pattern matching constructs.
It is implemented in bnf, lex, and term with function evaluation provided by an eval/apply interpreter [FH88, p. 205–211],
written in term. Inter-operation with term is provided by allowing the import of single result term rules and exporting
functions as term rules with a single result. Calls to and from fun need to take into account and respect the fun data
structuring conventions, which are documented as term constructors.

3.3 Integrator: an Exemplar Multiparadigm Application

We decided to use blueprint as the implementation vehicle for a program dealing with function integration. Lexical analysis
of the functions is provided by lex, the parsing by bnf, the numerical integration by fun, and the symbolic integration by
btrack. We also used term to simplify and print the results, and imper to provide a graphing capability by interfacing to
the X-Window system.

Numeric integration was performed by constructing an infinite list of better and better approximations, and eliminating
the error terms using a higher-order method described in [Hug90]. The lazy function evaluation and functional style of
fun allowed us to express the algorithm succinctly using function composition.

Symbolic integration on the other hand depends on heuristics, that are easily expressed as non-deterministic btrack
predicates. In the process of integration one typically needs to dwell deep into a solution path to decide whether a specific
method can be applied or not (e.g. integration “by parts”). The backtracking nature of the btrack predicates made this
expression natural and close to the problem domain.

Integrator was implemented in three days. Table 1 has a list of the modules and their size, and figure 7 provides
the paradigm inter-operation call graph of the system. We believe that each part of the system was implemented in the
most suited paradigm. It seems, that implementing the system in the blueprint multiparadigm environment resulted in a
concise and thus inherently (though always relatively) correct and easily maintainable system. Writing the integrator in
an imperative language would result in an order of magnitude larger system, while choosing a single declarative language
as the implementation vehicle would still make the system at least twice as complicated.

10

Function Paradigm Module Lines
Symbolic integration btrack sint.pb 127
Lexical analysis regex scan.pl 47
Expression parsing bnf parse.py 76
Numeric integration fun aint.pf 75
Interfacing term ui.pt 131
Graph creation imper main.c 51

Total blueprint 507

Table 1: Integrator line count table

imper

regex term

fun

btrack

bnf

Figure 7: Integrator paradigm inter-operation call graph

4 Related Work

The usual approach to multiparadigm is to design languages that support many different paradigms [Pla92, Wel89, TOO86].
There are a number of languages that are based on this approach. Table 2 summarises the number of languages that are
described in the literature supporting different paradigm combinations. Many of the problems described in section 2
are difficult to address in this way. Furthermore, the resulting systems are inflexible, and every system only solves the
problem of combining the particular paradigms it supports. The combination of particular paradigms can however address
important theoretical problems [Fro87, Han90].

Some of the multiparadigm programming languages support the object-oriented paradigm [TOO86, McC92, GM87],
but do this as an additional paradigm, and not as a structuring mechanism for integrating other paradigms. In our approach
object-orientation is used externally to the multiparadigm programming system in order to structure and encapsulate its
components.

Finally, an approach that can be used for integrating arbitrary paradigms is described in [Zav89]. It concentrates
however more on the aspects of validation and verification of the resulting system, and less on the structure of it.

Functional
Imperative
Object-Oriented
Logic
Distributed
Constraint

Number of languages 23 10 9 8 10 7 5 4 5

Table 2: Number of languages found for the common paradigm combinations

11

5 Future Work and Conclusions

Applying object-oriented technology in the area of multiparadigm programming has given a number of promising results.
Objects provide a powerful way for encapsulating and integrating modules written in different paradigms. The paradigm
class hierarchy can be used to organise the implementation of a multiparadigm programming environment, and inheri-
tance to decrease the implementationn effort. The approach can be used create multiparadigm environment generators:
workbenches supporting the multiparadigm programming environment implementor.

In the previous sections we have outlined our approach to multiparadigmprogramming based on modeling programming
paradigms as object classes. We described how objects and classes can be used to encapsulate program modules and
their respective paradigms, how the paradigm class hierarchy can be used to abstract common paradigm characteristics,
and how the call gate abstraction can be used to provide paradigm inter-operation and flatten the class hierarchy into a
usable collection of paradigms. Furthermore we demonstrated how the object-oriented structuring mechanism provides the
necessary base for designing multiparadigm environment generators. In order to demonstrate our approach we developed
MPSS, a multiparadigm environment generator, used it to implement blueprint, a six paradigm programming environment,
and used all its paradigms in a numerical and symbolic integration package. The advantages from using object classes
as a structure for multiparadigm programming, exhibited themselves during all phases of the prototype development, and
convinced us of the merits of this approach.

More work needs to be put into the semantics and type checking of multiparadigm systems based on object classes.
Our structuring methodology can also be applied into other multiparadigm domains such as text processing, and can be
used to model little “throw-away” languages and an associated software development process. We feel that many of the
above mentioned goals are worth pursuing.

Acknowledgements

We would like to thank Bashar Nuseibeh for his helpful comments on earlier drafts of this paper. Support from the British
Science and Engineering Research Council is gratefully acknowledged.

References

[Ben88] Jon Louis Bentley. More Programming Pearls: Confessions of a Coder. Addison-Wesley, 1988.

[Coh85] Jacques Cohen. Describing Prolog by its interpretation and compilation. Communications of the ACM,
28(12):1311–1324, December 1985.

[Coo92] William R. Cook. Interfaces and specifications for the Smalltalk-80 collection classes. ACM SIGPLAN Notices,
27(10):1–15, October 1992. Sevent Annual Conference on Object-Oriented Programming Systems, Languages
and Applications, OOPSLA ’92 Conference Proceedings, October 18–22, Vancouver, BritishColumbia, Canada.

[Deb88] Saumya K. Debray. The SB-Prolog System, Version 3.0: A User Manual. University of Arizona, Department
of Computer Science, Tucson, AZ 85721, USA, September 1988.

[FH88] Anthony J. Field and Peter G. Harrison. Functional Programming. Addison-Wesley, 1988.

[Fro87] Bertram Fronhöfer. PLANLOG: A language framework for the integration of procedural and logical program-
ming. In John McDermott, editor, IJCAI 87: Proceedings of the Tenth International Joint Conference on
Artificial Intelligence, pages 15–17, Milan, Italy, August 1987.

[FT90] Ian Foster and Stephen Taylor. Strand: New Concepts in Parallel Programming. Prentice-Hall, 1990.

[GM87] Joseph A. Goguen and José Meseguer. Unifying functional, object-oriented and relational programming
with logical semantics. In Bruce Shriver and Peter Wegner, editors, Research Directions in Object-Oriented
Programming, pages 417–477. MIT Press, 1987.

[Han90] Michael Hanus. A functional and logic language with polymorphic types. In A. Miola, editor, Design and
Implementation of Symbolic Computation Systems: International Symposium DISCO’90 Proceedings, pages
215–224, Capri, Italy, April 1990. Springer-Verlag. Lecture Notes in Computer Science 429.

12

[Hug90] John Hughes. Why functional programming matters. In David A. Turner, editor, Research Topics in Functional
Programming, chapter 2, pages 17–42. Addison-Wesley, 1990. Also appeared in the April 1989 issue of The
Computer Journal.

[Joh75] Stephen C. Johnson. Yacc — yet another compiler-compiler. Computer Science Technical Report 32, Bell
Laboratories, Murray Hill, NJ, USA, July 1975.

[KR88] Brian W. Kernighan and Dennis M. Ritchie. The C Programming Language. Prentice-Hall, second edition,
1988.

[Les75] Michael E. Lesk. Lex — a lexical analyzer generator. Computer Science Technical Report 39, Bell Laboratories,
Murray Hill, NJ, USA, October 1975.

[McC92] Francis G. McCabe. Logic and Objects. Prentice Hall, 1992.

[Mey90] Bertrand Meyer. Lessons from the design of the Eiffel libraries. Communications of the ACM, 33(9):68–88,
September 1990.

[Nel91] Michael L. Nelson. An object-oriented tower of Babel. OOPS Messenger, 2(3):3–11, July 1991.

[Pla92] John Placer. Integrating destructive assignment and lazy evaluation in the multiparadigm language G-2. ACM
SIGPLAN Notices, 27(2):65–74, February 1992.

[Rit84] Dennis M. Ritchie. Reflections on software research. Communications of the ACM, 27(8):758–760, 1984.

[TOO86] Ikuo Takeuchi, Hiroshi Okuno, and Nobuyasu Ohsato. A list processing language TAO with multiple program-
ming paradigms. New Generation Computing, 4(4):401–444, 1986.

[Tur85] David A. Turner. Miranda — a non-strict functional language with polymorphic types. In Jean-Pierre Jouannaud,
editor, Proceedings of the Conference on Functional Programming Languages and Computer Architecture,pages
1–16, Nancy, France, September 1985. Springer-Verlag. Lecture Notes in Computer Science 201.

[War83] David H. D. Warren. An abstract Prolog instruction set. Technical Note 309, SRI International, Artificial
Intelligence Center, Computer Science and Technology Division, 333 Ravenswood Ave., Menlo Park, CA,
USA, October 1983.

[Weg87] Peter Wegner. Dimensions of object-based language design. ACM SIGPLAN Notices, 22(12):168–182, Decem-
ber 1987. Special Issue: Object-Oriented Programming Systems, Languages and Applications, OOPSLA ’87
Conference Proceedings, October 4–8, Orlando, Florida, USA.

[Wel89] M. Wells. Multiparadigmatic programming in Modcap. Journal of Object-Oriented Programming, 1(5):53–60,
January/February 1989.

[Wir85] Niklaus Wirth. Programming in Modula-2. Springer Verlag, third edition, 1985.

[Zav89] Pamela Zave. A compositional approach to multiparadigm programming. IEEE Software, 6(5):15–25, Septem-
ber 1989.

13

