
When developers compare open source with proprietary software, what should be a civilized

debate often degenerates into a flame war. This need not be so, because there is plenty of room

for a cool-headed objective comparison.

Researchers examine the efficacy of open source development processes through various

complementary approaches.

• One method involves looking at the quality of the code, its internal quality attributes, such

as the density of comments or the use of global variables [Stamelos et al. 2002].

• Another approach involves examining the software's external quality attributes, which

reflect how the software appears to its end users [Kuan 2003].

• Then, instead of the product one can look at the process: examine measures related to the

code's construction and maintenance, such as the how much code is being added each

week or how swiftly bugs are closed [Paulson et al. 2004].

• Another approach involves discussing specific scenarios. For instance, Hoepman and

Jacobs [Hoepman and Jacobs 2007] examine the security of open source software by

looking at how leaked source code from Windows NT and Diebold voting machines led to

attacks and how open source practices lead to cleaner code and allow the use of security-

verification tools.

• Finally, a number of arguments are based on plain hand waving: more than a decade ago

Bob Glass [Glass 1999] identified this trend in the hype associated with the emergence of

Linux in the IT industry.

Although many researchers over the years have examined open source artifacts and processes

[Fitzgerald and Feller 2002], [Spinellis and Szyperski 2004], [Feller 2005], [Feller et al.

2005], [von Krogh and von Hippel 2006], [Capiluppi and Robles 2007], [Sowe et al. 2007],

[Stol et al. 2009], the direct comparison of open source systems with corresponding proprietary

products has remained an elusive goal. The reason for this is that it used to be difficult to find

a proprietary product comparable to an open source equivalent, and then convince the

proprietary product's owner to provide its source code for an objective comparison. However,

the open-sourcing of Sun's Solaris kernel and the distribution of large parts of the Windows

kernel source code to research institutions provided me with a window of opportunity to

perform a comparative evaluation between the open source code and the code of systems

developed as proprietary software.

Here I report on code quality metrics (measures) I collected from four large industrial-scale

operating systems: FreeBSD, Linux, OpenSolaris, and the Windows Research Kernel (WRK).

This chapter is not a crime mystery, so I'm revealing my main finding right up front: there are

no significant across-the-board code quality differences between these four systems. Now that

you know the ending, let me suggest that you keep on reading, because in the following

sections you'll find not only how I arrived at this finding, but also numerous code quality

metrics for objectively evaluating software written in C, which you can also apply to your code.

Although some of these metrics have not been empirically validated, they are based on

generally accepted coding guidelines, and therefore represent the rough consensus of

developers concerning desirable code attributes. I first reported these findings at the 2008

International Conference of Software Engineering [Spinellis 2008]; this chapter contains many

additional details.

Researchers have been studying the quality attributes of operating system code for more than

two decades [Henry and Kafura 1981], [Yu et al. 2004]. Particularly close to the work you're

reading here are comparative studies of open source operating systems [Yu et al. 2006],

[Izurieta and Bieman 2006], and studies comparing open and closed source systems [Stamelos

et al. 2002], [Paulson et al. 2004], [Samoladas et al. 2004].

A comparison of maintainability attributes between the Linux and various Berkeley Software

Distribution (BSD) operating systems found that Linux contained more instances of module

communication through global variables (known as common coupling) than the BSD variants.

The results I report here corroborate this finding for file-scoped identifiers, but not for global

identifiers (see Figure 8-11). Furthermore, an evaluation of growth dynamics of the FreeBSD

and Linux operating systems found that both grow at a linear rate, and that claims of open

source systems growing at a faster rate than commercial systems are unfounded [Izurieta and

Bieman 2006].

A study by Paulson and his colleagues [Paulson et al. 2004] compares evolutionary patterns

between three open source projects (Linux, GCC, and Apache) and three non-disclosed

commercial ones. They found a faster rate of bug fixing and feature addition in the open source

projects, which is something we would expect for very popular projects like those they

examine. In another study focusing on the quality of the code (its internal quality attributes)

[Stamelos et al. 2002] the authors used a commercial tool to evaluate 100 open source

applications using metrics similar to those reported here, but measured on a scale ranging from

accept to rewrite. They then compared the results against benchmarks supplied by the tool's

vendor for commercial projects. The authors found that only half of the modules they

examined would be considered acceptable by software organizations applying programming

standards based on software metrics. A related study by the same group [Samoladas et al.

2004] examined the evolution of a measure called maintainability index [Coleman et al. 1994]

between an open source application and its (semi)proprietary forks. They concluded that all

projects suffered from a similar deterioration of the maintainability index over time.

Figure 8-1 shows the history and genealogy of the systems I examine. * All four systems started

their independent life in 1991–1993. At that time affordable microprocessor-based computers

that supported a 32-bit address space and memory management led to the Cambrian explosion

for modern operating systems. Two of the systems, FreeBSD and OpenSolaris, share common

ancestry that goes back to the 1978 1BSD version of Unix. FreeBSD is based on BSD/Net2: a

distribution of the Berkeley Unix source code that was purged from proprietary AT&T code.

Consequently, while both FreeBSD and OpenSolaris contain code written at Berkeley, only

OpenSolaris contains AT&T code. Specifically, the code behind OpenSolaris traces its origins

* If you think that the arrows point the wrong way round, you're in good company. Nevertheless, take

some time too look them up in your favourite UML reference.

back to the 1973 version of Unix, which was the first written in C [Salus 1994]. In 2005 Sun

released most of the Solaris source code under an open-source license.

Linux was developed from scratch in an effort to build a more feature-rich version of

Tanenbaum's teaching-oriented, POSIX-compatible Minix operating system [Tanenbaum

1987]. Thus, although Linux borrowed ideas from both Minix and Unix, it did not derive from

their code [Torvalds and Diamond 2001].

The intellectual roots of Windows NT go back to DEC's VMS through the common involvement

of the lead engineer David Cutler in both projects. Windows NT was developed as Microsoft's

answer to Unix, initially as an alternative of IBM's OS/2, and later as a replacement of the 16-

bit Windows code base. The Windows Research Kernel (WRK) whose code I examine in this

chapter includes major portions of the 64-bit Windows kernel, which Microsoft distributes for

research use [Polze and Probert 2006]. The kernel is written in C with some small extensions.

Excluded from the kernel code are the device drivers, and the plug-and-play, power

management and virtual DOS subsystems. The missing parts explain the large size difference

between the WRK and the other three kernels.

Although all four systems I examine are available in source code form, their development

methodologies are markedly different. Microsoft and Sun engineers built Windows NT and

Solaris within their companies as proprietary systems with minimal if any involvememnt of

outsiders in the development process. (OpenSolaris has a very short life as an open-source

project, and therefore only minimal code could have been contributed by developers outside

Sun in the snapshot I examined.) Furthermore, Solaris has been developed with emphasis on

a formal process [Dickinson 1996], while the development of Windows NT employed more

lightweight methods [Cusumano and Selby 1995]. FreeBSD and Linux are both developed

using open source development methods [Feller and Fitzgerald 2001], but their development

processes are also dissimilar. FreeBSD is mainly developed by a non-hierarchical group of about

220 committers who have access to a shared software repository that was initially CVS and

currently Subversion [Jrgensen 2001]. In contrast, Linux's developers are organized in a four

tier pyramid. At the bottom two levels thousands of developers contribute patches to about

560 subsystem maintainers. At the top of the pyramid Linus Torvalds, assisted by a group of

trusted lieutenants, is the sole person responsible for adding the patches to the Linux tree

[Rigby and German 2006]. Nowadays, Linux developers coordinate their code changes through

git, a purpose-built distributed version control system.

I calculated most of the metrics reported here by issuing SQL queries on a relational database

containing the code elements comprising each system: modules, identifiers, tokens, functions,

files, comments, and their relationships. The database's schema appears in Figure 8-2. † I

constructed the database for each system by running the CScout refactoring browser for C code

[Spinellis 2003], [Spinellis 2010] on a number of processor-specific configurations of each

† The databases (141 million records) and all the corresponding queries are available online at http://www

.spinellis.gr/sw/4kernel/.

1969

1971

1972

1973

1974

1975

1978

1979

1980

1981

1982

1983

1986

1988

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001

2003

2005

2006

UNIX PDP-7

Unix Time-Shar ing System 1

Unix Time-Shar ing System 2

Unix Time-Shar ing System 3

Unix Time-Shar ing System 4

Unix Time-Shar ing System 5 P W B / U N I X

Unix Time-Shar ing System 6

1 B S D

Unix Time-Shar ing System 7

UNIX System I I I

UNIX System V

UNIX System V

Release 4

Solaris 2

2 B S D Unix 32V

3 B S D

4.1BSD

4 .1cBSD

SunOS 1 .0

4 .2BSD

4 .3BSD

4.3BSD Tahoe

4.3BSD Reno

4.4BSD-Li te

BSD Net /2

4.4BSD-Li te

Release 2
FreeBSD 2.0

FreeBSD 3.0

FreeBSD 4.0

386BSD 0 .0

386BSD 0 .1

FreeBSD 1.0

FreeBSD 5.0

FreeBSD 6.0

FreeBSD 6.1

SunOS 3 .2

Solaris 2.1

Solaris 2.2

Solaris 2.4

Solaris 2.5

Solaris 2.6

Solaris 7

Solaris 8

Solaris 9

Solaris 10

OpenSolar is

Linux 0.1

Linux 0.99

Linux 1.0

Linux 1.2

Linux 2.0

Linux 2.2

Linux 2.4.0

Linux 2.6

Linux 2.6.18

Windows NT 3 .1

Windows NT 3 .5

Windows NT 3 .51

Windows NT 4 .0

Windows 2000

(NT 5.0)

Windows XP

(NT 5.1)

Windows Server 2003

(NT 5.2)

W R K 1 . 2

operating system. (A processor-specific configuration comprises different macro definitions and

files, and will therefore process code in a different way.) To process the source code of a

complete system CScout must be given a configuration file that will specify the precise

environment used for processing each compilation unit (C file). For the FreeBSD and the Linux

kernels I constructed this configuration file by instrumenting proxies for the GNU C compiler,

the linker, and some shell commands. These recorded their arguments (mainly the include file

path and macro definitions) in a format that could then be used to construct a CScout

configuration file. For OpenSolaris and the WRK I simply performed a full build for the

configurations I investigated, recorded the commands that were executed in a log file, and then

processed the compilation and linking commands appearing in the build's log.

In order to limit bias introduced in the selection of metrics, I chose and defined the metrics I

would collect before setting up the mechanisms to measure them. This helped me avoid the

biased selection of metrics based on results I obtained along the way. However, this ex ante

selection also resulted in many metrics—like the number of characters per line—that did not

supply any interesting information, failing to provide a clear winner or loser. On the other

hand my selection of metrics was not completely blind, because at the time I designed the

experiment I was already familiar with the source code of the FreeBSD kernel and had seen

source code from Linux, the 9th Research Edition Unix, and some Windows device drivers.

Other methodological limitations of this study are the small number of (admittedly large and

important) systems studied, the language specificity of the employed metrics, and the coverage

of only maintainability and portability from the space of all software quality attributes. This

last limitation means that the study fails to take into account the large and important set of

quality attributes that are typically determined at runtime: functionality, reliability, usability,

and efficiency. However, these missing attributes often depend on factors that are beyond the

control of the system's developers: configuration, tuning, and workload selection. Studying

them would introduce additional subjective biases, such as configurations that were unsuitable

N a m e

Name

isObject

i sMacro

isTag

...

Modu l e*

*

F i l e

name

metr ics

*

*

T o k e n

f i leOffset

1

*

1

*

Comme n t

f i leOffset

commentText

1

*

S t r i n g

f i leOffset

stringText

1

*

R e s t

f i leOffset

codeText

1

*

L i n e

f i leOffset

l ineNumber

1

*

Func t i o n

isFunct ion

isMacro

f i leScoped

*

*

1

*

Func t ionMe t r i cs

beginFi leOffset

endFi leOffset

metr ics

Def in i t ion

end

1

*

Def in i t ion

begin

1

*

1

0. .1
Func t ionCa l l

Sou rce

1

*

Target

1

*

F i l eCopy

1

*

I n cT r i gge rs

Pid

CUid

BaseFi le Id

Def iner Id

FOffset

len

*

*

*

*

*

*

*

*

for some workloads or operating environments. The controversy surrounding studies

comparing competing operating systems in areas like security or performance demonstrates

the difficulty of such approaches.

The large size difference between the WRK source code and the other systems, is not as

problematic as it may initially appear. An earlier study on the distribution of the maintainability

index [Coleman et al. 1994] across various FreeBSD modules showed that their maintainability

was evenly distributed, with few outliers at each end [Spinellis 2006]. This means that we can

form an opinion about a large software system by looking at a small sample of it. Therefore,

the WRK code I examine can be treated as a representative subset of the complete Windows

operating system kernel.

The key properties of the systems I examine appear in Table 8-1. The quality metrics I collected

can be roughly categorized into the areas of file organization, code structure, code style,

preprocessing, and data organization. When it is easy to represent a metric with a single

number, I list its values for each of the four systems in a table and on the left I indicate whether

ideally that number should be high (), low (), or near a particular value (e.g. 1). In other

cases we must look at the distribution of the various values, and for this I use so-called

candlestick figures, like Figure 8-3. Each element in such a figure depicts five values:

• the minimum, at the bottom of the line,

• the lower (25%) quartile, at the bottom of the box,

• the median (the numeric value separating the higher half of the values from the lower

half), as a horizontal line within the box,

• the upper (75%) quartile, at the top of the box,

• the maximum value, at the top of the line, and

• the arithmetic mean, as a diamond.

Minima and maxima lying outside the graph's range are indicated with a dashed line along

with a figure of their actual value.

In the C programming language source code files play a significant role in structuring a system.

A file forms a scope boundary, while the directory it is located may determine the search path

for included header files [Harbison and Steele Jr. 1991]. Thus, the appropriate organization of

definitions and declarations into files, and files into directories is a measure of the system's

modularity [Parnas 1972].

Figure 8-3 shows the length of C and header files. Most files are less than 2000 lines long.

Overly long files (such as the C files in OpenSolaris and the WRK) are often problematic,

because they can be difficult to manage, they may create many dependencies, and they may

violate modularity. Indeed the longest header file (WRK's winerror.h) at 27,000 lines lumps

together error messages from 30 different areas, most of which are not related to the Windows

kernel.

A related measure examines the contents of files, not in terms of lines, but in terms of defined

entities. In C source files I count global functions. In header files an important entity is a

structure; the closest abstraction to a class that is available in C. Figure 8-4 shows the number

of global functions that are declared in each C file and the number of aggregates (structures or

unions) that are defined in each header file. Ideally, both numbers should be small, indicating

an appropriate separation of concerns. The C files of OpenSolaris and WRK come out worse

than the other systems, while a significant number of WRK's header files look bad, because

they define more than 10 structures each.

The four systems I've examined have interesting directory structures. As you can see in

Figure 8-5 to Figure 8-8, three of the four systems have similarly wide structures. The small

size and complexity of the WRK reflects the fact that Microsoft has excluded from it many large

parts of the Windows kernel. We see that the directories in Linux are relatively evenly

distributed across the whole source code tree, whereas in FreeBSD and OpenSolaris some

directories lump together in clusters. This can be the result of organic growth over a longer

period of time, because both systems have twenty more years of history on their back

(Figure 8-1). The more even distribution of Linux's directories may also reflect the

decentralized nature of its development.

At a higher level of granularity, I examine the number of files located in a single directory.

Again, putting many files in a directory is like having many elements in a module. A large

number of files can confuse developers, who often search through these files as a group with

tools like grep, and lead to accidental identifier collisions through shared header files. The

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

FreeBSD Linux Solaris Windows

4
7
,7

9
2

1
3
,9

4
7

2
7
,6

9
8

1
5
,0

9
6

 0

 200

 400

 600

 800

 1000

 1200

FreeBSD Linux Solaris Windows

1
2
,2

2
9

1
1
,6

4
5

3
5
,3

7
6

2
7
,3

9
1

 0

 2

 4

 6

 8

 10

 12

FreeBSD Linux Solaris Windows

3
3
8

3
3
8

2
5
8

1
5
6

 0

 2

 4

 6

 8

 10

 12

 14

FreeBSD Linux Solaris Windows

3
3
3

1
4
5

1
8
4

2
1
9

numbers I found in the examined systems can be seen in Table 8-2, and show Linux lagging

the other systems.

The next line in the table describes the ratio between header files and C files. I used the

following SQL query to calculate these numbers.

select (select count(*) from FILES where name like '%.c') /

 (select count(*) from FILES where name like '%.h')

A common style guideline for C code involves putting each module's interface in a separate

header file and its implementation in a corresponding C file. Thus a ratio of header to C files

around 1 is the optimum; numbers significantly diverging from one may indicate an unclear

distinction between interface and implementation. This can be acceptable for a small system

(the ratio in the implementation of the awk programming language is 3/11), but will be a

problem in a system consisting of thousands of files. All the systems score acceptably in this

metric.

Finally, the last line in Table 8-2 provides a metric related to the complexity of file relationships.

I study this by looking at files as nodes in a directed graph. I define a file's fan-out as the number

of efferent (outgoing) references it makes to elements declared or defined in other files. For

instance, a C file that uses the symbols FILE, putc, and malloc (defined outside the C file in the

stdio.h and stdlib.h header files) has a fan-out of 3. Correspondingly, I define as a file's fan-in

the number of afferent (incoming) references made by other files. Thus, in the previous

example, the fan-in of stdio.h would be 2. I used Henry and Kafura's information flow metric

[Henry and Kafura 1981] to look at the corresponding relationships between files.

The value I report is

(fanIn × fanOut)2

I calculated the value based on the contents of the CScout database table INCTRIGGERS, which

stores data about symbols in each file that are linked with other files.

select avg(pow(fanout.c * fanin.c, 2)) from

 (select basefileid fid, count(definerid) c from

 (select distinct BASEFILEID, DEFINERID, FOFFSET from INCTRIGGERS) i2 group by basefileid) fanout

 inner join

 (select definerid fid, count(basefileid) c from

 (select distinct BASEFILEID, DEFINERID, FOFFSET from INCTRIGGERS) i2 group by definerid) fanin

 on fanout.fid = fanin.fid

The calculation works as follows. For the connections each file makes the innermost select

statements derive a set of unique identifiers and the files they are defined or referenced. Then,

the middle select statements count the number of identifiers per file, and the outermost

select statement joins each file's definitions with its references and calculates the

corresponding information flow metric. A large value for this metric has been associated with

the occurrence of changes and structural flaws.

The code structures of the four systems illustrates how similar problems can be tackled through

different control structures and separation of concerns. It also allows us to peer into the design

of each system.

Figure 8-9 shows the distribution across functions of the extended cyclomatic complexity

metric [McCabe 1976]. This is a measure of the number of independent paths contained in

each function. The number shown takes into account Boolean and conditional evaluation

operators (because these introduce additional paths), but not multi-way switch statements,

because these would disproportionally affect the result for code that is typically cookie-cutter

similar. The metric was designed to measure a program's testability, understandability, and

maintainability [Gill and Kemerer 1991]. In this regard Linux scores better than the other

systems and the WRK worse. The same figure also shows the number of C statements per

function. Ideally, this should be a small number (e.g. around 20) allowing the function's

complete code to fit on the developer's screen. Linux again scores better than the other systems.

In Figure 8-10 we can see the distribution of the Halstead volume complexity [Halstead

1977]. For a given piece of code this is based on four numbers.

 1

 2

 3

 4

 5

 6

 7

FreeBSD Linux Solaris Windows

3
5
4

3
4
1

3
4
2

2
6
4

-10

-5

 0

 5

 10

 15

 20

 25

FreeBSD Linux Solaris Windows

1
,0

7
3

1
,0

8
4

1
,2

0
9

8
0
8

n1

Number of distinct operators

n2

Number of distinct operands

N1

Total number of operators

N2

Total number of operands

Given these four numbers we calculate the program's so-called volume as

(N1 + N2) × log2(n1 + n2)

For instance, for the expression

op = &(!x ? (!y ? upleft : (y == bottom ? lowleft : left)) :

(x == last ? (!y ? upright : (y == bottom ? lowright : right)) :

(!y ? upper : (y == bottom ? lower : normal))))[w->orientation];

the four variables have the following values.

n1

= & () ! ?: == [] -> (8)

n2

bottom last left lower lowleft lowright normal op orientation right upleft upper upright

w x y (16)

N1

27

N2

24

The theory behind calculating the Halstead volume complexity number is that it should be low,

reflecting code that doesn't require a lot of mental effort to comprehend. This metric, however,

has often been criticized. As was the case with the cyclomatic complexity, Linux scores better

and the WRK worse than the other systems.

Taking a step back to look at interactions between functions, Figure 8-11 depicts common

coupling in functions by showing the percentage of the unique identifiers appearing in a

function's body that come either from the scope of the compilation unit (file-scoped identifiers

declared as static) or from the project scope (global objects). Both forms of coupling are

undesirable, with the global identifiers considered worse than the file-scoped ones. Linux

scores better than the other systems in the case of common coupling at the global scope, but

(probably because of this) scores worse than them when looking at the file scope. All other

systems are more evenly balanced.

Other metrics associated with code structure appear in Table 8-3. The percentage of global

functions indicates the functions visible throughout the system. The number of such functions

in the WRK (nearly 100%; also verified by hand) is shockingly high. It may however reflect

Microsoft's use of different techniques—such as linking into shared libraries (DLLs) with

explicitly exported symbols—for avoiding identifier clashes.

Strictly structured functions are those following the rules of structured programming: a single

point of exit and no goto statements. The simplicity of such functions makes it easier to reason

about them. Their percentage is calculated by looking at the number of keywords within each

function through the following SQL query.

 0

 100

 200

 300

 400

 500

 600

FreeBSD Linux Solaris Windows

4
2
,2

4
8

4
6
,9

2
4

4
7
,8

7
0

3
0
,3

9
1

 0

 20

 40

 60

 80

 100

FreeBSD Linux Solaris Windows
 0

 20

 40

 60

 80

 100

FreeBSD Linux Solaris Windows

select 100 -

(select count(*) from FUNCTIONMETRICS where nreturn > 1 or ngoto > 0) /

(select count(*) from FUNCTIONMETRICS) * 100

Along the same lines, the percentage of labeled statements indicates goto targets: a severe

violation of structured programming principles. I measured labeled statements rather than

goto statements, because many branch targets are a lot more confusing than many branch

sources. Often multiple goto statements to a single label are used to exit from a function while

performing some cleanup—the equivalent of an exception's finally clause.

The number of arguments to a function is an indicator of the interface's quality: when many

arguments must be passed, packaging them into a single structure reduces clutter and opens

up opportunities for optimization in style and performance.

Two metrics tracking the code's understandability are the average depth of maximum nesting

and the number of tokens per statement. These metrics are based on the theories that both

deeply nested structures and long statements are difficult to comprehend [Cant et al. 1995].

Replicated code has been associated with bugs [Li et al. 2006] and maintainability problems

[Spinellis 2006]. The corresponding metric (% of tokens in replicated code) shows the

percentage of the code's tokens that participate in at least one clone set. To obtain this metric

I used the CCFinderX‡ tool to locate the duplicated code lines and a script (Example 8-1) to

measure the ratio of such lines.

Process CCFinderX results
open(IN, "ccfx.exe P $ARGV[0].ccfxd|") || die;
while (<IN>) {
 chop;
 if (/^source_files/ .. /^\}/) {
 # Process file definition lines like the following:
 # 611 /src/sys/amd64/pci/pci_bus.c 1041
 ($id, $name, $tok) = split;
 $file[$id][$tok - 1] = 0 if ($tok > 0);
 $nfile++;
 } elsif (/^clone_pairs/ .. /^\}/) {
 # Process pair identification lines like the following for files 14 and 363:
 # 1908 14.1753-1832 363.1909-1988
 ($id, $c1, $c2) = split;
 mapfile($c1);
 mapfile($c2);

‡ http://www.ccfinder.net/

 }
}

Add up and report tokens and cloned tokens
for ($fid = 0; $fid <= $#file; $fid++) {
 for ($tokid = 0; $tokid <= $#{$file[$fid]}; $tokid++) {
 $ntok++;
 $nclone += $file[$fid][$tokid];
 }
}
print "$ARGV[0] nfiles=$nfile ntok=$ntok nclone=$nclone ", $nclone / $ntok * 100, "\n";

Set the file's cloned lines to 1
sub mapfile
{
 my($clone) = @_;
 my ($fid, $start, $end) = ($clone =~ m/^(\d+)\.(\d+)\-(\d+)$/);
 for ($i = $start; $i <= $end; $i++) {
 $file[$id][$i] = 1;
 }
}

Finally, the average structure complexity in functions uses Henry and Kafura's information

flow metric [Henry and Kafura 1981] again to look at the relationships between functions.

Ideally we would want this number to be low, indicating an appropriate separation between

suppliers and consumers of functionality.

Various choices of indentation, spacing, identifier names, representations for constants, and

naming conventions can distinguish sets of code that functionally do exactly the same thing.

[Kernighan and Plauger 1978], [The FreeBSD Project 1995], [Cannon et al.], [Stallman et al.

2005]. In most sane cases, consistency is more important than the specific code style

convention that was chosen.

For this study, I measured each system's consistency of style by applying the formatting

program indent§ on the complete source code of each system, and counting the lines that

indent modified. The result appears on the first line of Table 8-4. The behavior of indent can be

modified using various options in order to match a formatting style's guidelines. For instance,

one can specify the amount of indentation and the placement of braces. In order to determine

each system's formatting style and use the appropriate formatting options, I first run indent on

each system with various values of the 15 numerical flags, and turning on or off each one of

the 55 Boolean flags (see Example 8-2 and Example 8-3). I then chose the set of flags that

produced the largest number of conforming lines. For example, on the OpenSolaris source code

indent with its default flags would reformat 74% of the lines. This number shrank to 16% once

the appropriate flags were determined (-i8 -bli0 -cbi0 -ci4 -ip0 -bad -bbb -br -brs -ce -nbbo -ncs -nlp

-npcs).

DIR=$1
NFILES=0
RNFILES=0

Determine the files that are OK for indent
for f in `find $DIR -name '*.c'`
do
 # The error code is not always correct, so we have to grep for errors
 if indent -st $f 2>&1 >/dev/null | grep -q Error:
 then
 REJECTED="$REJECTED $f"
 RNFILES=`expr $RNFILES + 1`
 echo -n "Rejecting $f - number of lines: "
 wc -l <$f
 else
 FILES="$FILES $f"
 NFILES=`expr $NFILES + 1`
 fi
done

LINES=`echo $FILES | xargs cat | wc -l`
RLINES=`echo $REJECTED | xargs cat | wc -l`

Format the files with the specified options
Return the number of mismatched lines
try()
{
 for f in $FILES
 do
 indent -st $IOPT $1 $f |
 diff $f -
 done |

§ http://www.gnu.org/software/indent/

 grep '^<' |
 wc -l
}

Report the results in a format suitable for further processing
status()
{
 echo "$IOPT: $VIOLATIONS violations in $LINES lines of $NFILES files ($RLINES of $RNFILES files not processed)"
}

Determine base case
VIOLATIONS=`try`
status

Try various numerical options with values 0-8
for try_opt in i ts bli c cbi cd ci cli cp d di ip l lc pi
do
 BEST=$VIOLATIONS
 for n in 0 1 2 3 4 5 6 7 8
 do
 NEW=`try -try_optn`
 if [$NEW -lt $BEST]
 then
 BNUM=$n
 BEST=$NEW
 fi
 done
 if [$BEST -lt $VIOLATIONS]
 then
 IOPT="$IOPT -$try_opt$BNUM"
 VIOLATIONS=$BEST
 status
 fi
done

Try the various Boolean options
for try_opt in bad bap bbb bbo bc bl bls br brs bs cdb cdw ce cs bfda \
 bfde fc1 fca hnl lp lps nbad nbap nbbo nbc nbfda ncdb ncdw nce \
 ncs nfc1 nfca nhnl nip nlp npcs nprs npsl nsaf nsai nsaw nsc nsob \
 nss nut pcs prs psl saf sai saw sc sob ss ut
do
 NEW=`try -$try_opt`
 if [$NEW -lt $VIOLATIONS]
 then
 IOPT="$IOPT -$try_opt"
 VIOLATIONS=$NEW
 fi
 status
done

Figure 8-12 depicts the length distribution of two important classes of C identifiers: those of

globally visible objects (variables and functions) and the tags used for identifying aggregates

(structures and unions). Because each class typically uses a single name space, it is important

to choose distinct and recognizable names (see chapter 31 of reference [McConnell 2004]). For

these classes of identifiers, longer names are preferable, and the WRK excels in both cases, as

anyone who has programmed using the Windows API could easily guess.

Some other metrics related to code style appear in Table 8-4. To measure consistency, I also

determined through code inspection the convention used for naming typedefs and aggregate

tags, and then counted the identifiers of those classes that did not match the convention. Here

are the two SQL queries I ran, one on the Unix-like systems and the other on the WRK.

select 100 * (select count(*) from IDS where typedef and name like '%_t') /

 (select count(*) from IDS where typedef)

select 100 * (select count(*) from IDS where typedef and name regexp '^[A-Z0-9_]*$') /

 (select count(*) from IDS where typedef)

Three other metrics aimed at identifying programming practices that style guidelines typically

discourage:

• Overly long lines of code (characters per line metric)

• The direct use of “magic” numbers in the code (% of numeric constants in operands),

• The definition of function-like macros that can misbehave when placed after an if

statement (% unsafe function-like macros)

 0

 5

 10

 15

 20

 25

FreeBSD Linux Solaris Windows

4
6

4
5

5
3

8
4

 0

 5

 10

 15

 20

 25

 30

FreeBSD Linux Solaris Windows

4
3

7
3

5
0

6
8

The following SQL query roughly calculates the percentage of unsafe function-like macros by

looking for bodies of such macros that contain more than one statement, but no do keywords.

The result represents a lower bound, because the query can miss other unsafe macros, such as

those consisting of an if statement.

select 100.0 * (select count(*) from FUNCTIONMETRICS left join
 FUNCTIONS on functionid = id where defined and ismacro and ndo = 0 and nstmt > 1) /
(select count(*) from FUNCTIONS where defined and ismacro)

Another important element of style involves commenting. It is difficult to judge objectively the

quality of code comments. Comments can be superfluous or even wrong. We can't

programmatically judge quality on that level, but we can easily measure the comment density.

So Figure 8-13 shows the the comment density in C files as the ratio of comment characters

to statements. In header files I measured it as the ratio of defined elements that typically require

an explanatory comment (enumerations, aggregates and their members, variable declarations,

and function-like macros) to the number of comments. In both cases I excluded files with

trivially little content. With remarkable consistency, the WRK scores better than the other

systems in this regard and Linux worse. Interestingly, the mean value of comment density is

a lot higher than the median, indicating that some files require substantially more commenting

than others.

select nccomment / nstatement from FILES where name like '%.c' and nstatement > 0

select (nlcomment + nbcomment) / (naggregate + namember + nppfmacro + nppomacro + nenum +
 npfunction + nffunction + npvar + nfvar)
 from FILES
 where name like '%.h' and naggregate + namember + nppfmacro + nppomacro > 0 and nuline / nline < .2

I also measured the number of spelling errors in the comments as a proxy for their quality. For

this I ran the text of the comments through the aspell spelling checker with a custom dictionary

consisting of all the system's identifier and file names (see Example 8-4). The low number of

errors in the WRK reflects the explicit spell-checking that according to accompanying

documentation, was performed before the code was released.

Create personal dictionary of correct words
from identifier names appearing in the code

Function-like macros containing more than one statement should have their body enclosed in a dummy

do ... while(0) block in order to make them behave like a call to a real function.

PERS=$1.en.pws
(
echo personal_ws-1.1 en 0
 (
 mysql -e 'select name from IDS union select name from FUNCTIONS union select name from FILES' $1 |
 tr /._ \\n |
 sed 's/\([a-z]\)\([A-Z]\)/\1\
\2/g'
 mysql -e 'select name from IDS union select name from FUNCTIONS union select name from FILES' $1 |
 tr /. \\n
) |
sort -u
) >$PERS

Get comments from source code files and spell check them
mysql -e 'select comment from COMMENTS left join FILES on COMMENTS.FID = FILES.FID where not name like "%.cs"' $1 |
sed 's/\\[ntrb]//g' |
tee $1.comments |
aspell --lang=en --personal=$PERS -C --ignore=3 --ignore-case=true --run-together-limit=10 list >$1.err
wc -w $1.comments # Number of words
wc -l $1.err # Number of errors

Although I did not measure portability objectively, the work involved in processing the source

code with CScout allowed me to get a feeling of the portability of each system's source code

between different compilers. The code of Linux and WRK appears to be the one most tightly

bound to a specific compiler. Linux uses numerous language extensions provided by the GNU

C compiler, sometimes including assembly code thinly disguised in what passes as C syntax in

gcc (see Example 8-5). The WRK uses considerably fewer language extensions, but relies

significantly on the try catch extension to C that the Microsoft compiler supports. The FreeBSD

kernel uses only a few gcc extensions, and these are often isolated inside wrapping macros. The

 0

 10

 20

 30

 40

 50

 60

 70

FreeBSD Linux Solaris Windows

1
0
,9

1
7

3
,4

1
2

1
,3

2
8

2
,2

7
0

 0

 0.5

 1

 1.5

 2

 2.5

 3

FreeBSD Linux Solaris Windows

3
0

4
4

7
1
8

6
2

OpenSolaris kernel was a welcome surprise: it was the only body of source code that did not

require any extensions to CScout in order to compile.

memmove

void *memmove(void *dest, const void *src, size_t n)
{
 int d0, d1, d2;

 if (dest < src) {
 memcpy(dest,src,n);
 } else {
 __asm__ __volatile__(
 "std\n\t"
 "rep\n\t"
 "movsb\n\t"
 "cld"
 : "=&c" (d0), "=&S" (d1), "=&D" (d2)
 :"0" (n),
 "1" (n-1+(const char *)src),
 "2" (n-1+(char *)dest)
 :"memory");
 }
 return dest;
}

The relationship between the C language proper and its (integral) preprocessor can at best be

described as uneasy. Although C and real-life programs rely significantly on the preprocessor,

its features often create portability, maintainability, and reliability problems. The preprocessor,

as a powerful but blunt instrument, wrecks havoc with identifier scopes, the ability to parse

and refactor unpreprocessed code, and the way code is compiled on different platforms. Thus

most C programming guidelines recommend moderation in the use of preprocessor constructs.

Also for this reason modern languages based on C have tried to replace features provided by

the C preprocessor with more disciplined alternatives. For instance, C++ provides constants

and powerful templates as alternatives to the C macros, while C# provides preprocessor-like

functionality only to aid conditional compilation and code generators.

The use of preprocessor features can be measured by the amount of expansion or contraction

that occurs when the preprocessor runs over the code. Figure 8-14 contains two such measures:

one for the body of functions (representing expansion of code), and one for elements outside

the body of functions (representing data definitions and declarations). The two measurements

were made by calculating the ratio of tokens arriving into the preprocessor to those coming

out of it. Here is the SQL query I used for calculating the expansion of code inside functions.

select nctoken / npptoken from FUNCTIONS

inner join FUNCTIONMETRICS on id = functionid

where defined and not ismacro and npptoken > 0

Both expansion and contraction are worrisome: expansion signifies the occurrence of complex

macros, while contraction is a sign of conditional compilation, which is also considered harmful

[Spencer and Collyer 1992]. Therefore, the values of these metrics should hover around 1. In

the case of functions OpenSolaris scores better than the other systems and FreeBSD worse,

while in the case of files the WRK scores substantially worse than all other systems.

Four further metrics listed in Table 8-5 measure increasingly unsafe uses of the preprocessor:

• Directives in header files (often required)

• Non-#include directives in C files (rarely needed)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

FreeBSD Linux Solaris Windows

9
7

1
2
3

0

9
3

0

9
0

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

FreeBSD Linux Solaris Windows

1
9

-2
5

7
1

-1
4

1
1

-2

3
-5

• Preprocessor directives in functions (of dubious value)

• Preprocessor conditionals in functions (a portability risk)

Preprocessor macros are typically used instead of variables (where we call these macros object-

like macros) and functions (where we call them function-like macros). In modern C, object-like

macros can often be replaced through enumeration members and function-like macros

through inline functions. Both alternatives adhere to the scoping rules of C blocks and are

therefore considerably safer than macros, whose scope typically spans a whole compilation

unit. The last three metrics of preprocessor use in Table 8-5 measure the occurrence of

function-like and object-like macros. Given the availability of viable alternatives and the

dangers associated with macros, all should ideally have low values.

The final set of measurements concerns the organization of each kernel's (in-memory) data.

A measure of the quality of this organization in C code can be determined by the scoping of

identifiers and the use of structures.

In contrast to many modern languages, C provides few mechanisms for controlling namespace

pollution. Functions can be defined in only two possible scopes (file and global), macros are

visible throughout the compilation unit in which they are defined, and aggregate tags typically

live all together in the global namespace. For the sake of maintainability, it's important for

large-scale systems such as the four examined in this chapter to judiciously use the few

mechanisms available to control the large number of identifiers that can clash.

Figure 8-15 shows the level of namespace pollution in C files by averaging the number of

identifiers and macros that are visible at the start of each function. With roughly 10,000

identifiers visible on average at any given point across the systems I examine, it is obvious that

namespace pollution is a problem in C code. Nevertheless, FreeBSD fares better than the other

systems and the WRK worse.

The first three measures in Table 8-6 examine how each system deals with its scarcest naming

resource, global variable identifiers. One would like to minimize the number of variable

declarations that take place at the global scope in order to minimize namespace pollution.

Furthermore, minimizing the percentage of operands that refer to global variables reduces

coupling and lessens the cognitive load on the reader of the code (global identifiers can be

declared anywhere in the millions of lines comprising the system). The last metric concerning

global objects counts identifiers that are declared as global, but could have been declared with

a static scope, because they are accessed only within a single file. The corresponding SQL query

calculates the percentage of identifiers with global (linkage unit) scope that exist only in a single

file.

select 100.0 * (select count(*) from

 (select TOKENS.eid from TOKENS

 left join IDS on TOKENS.eid = IDS.eid

 where ordinary and lscope group by eid having min(fid) = max(fid)) static) /

 (select count(*) from IDS)

The next two metrics look at variable declarations and operands with file scope. These are more

benign than global variables, but still worse than variables scoped at a block level.

The last two metrics concerning the organization of data provide a crude measure of the

abstraction mechanisms used in the code. Type and aggregate definitions are the two main

data abstraction mechanisms available to C programs. Therefore, counting the number of

variable declarations that correspond to each type or aggregate definition provides an

indication of how much these abstraction mechanisms have been employed.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

FreeBSD Linux Solaris Windows

select ((select count(*) from IDS where ordinary and not fun) /

 (select count(*) from IDS where suetag or typedef))

select ((select count(*) from IDS where sumember or enum) /

 (select count(*) from IDS where suetag))

These statements measure the number of data elements per aggregate or enumeration in

relation to data elements as a whole. This is similar to the relation that Chidamber and

Kemerer's object-oriented weighted methods per class (WMC—[Chidamber and Kemerer

1994])) metric has to code. A high value could indicate that a structure tries to store too many

disparate elements.

Table 8-7 summarizes my results. I have marked cells where an operating system excels with

a + and corresponding laggards with a –. For a number of reasons it would be a mistake to read

too much from this table. First of all, the weights of the table's metrics are not calibrated

according to their importance. In addition, it is far from clear that the metrics I used are

functionally independent, and that they provide a complete or even representative picture of

the quality of C code. Finally, I entered the +/– markings subjectively, trying to identify clear

cases of differentiation in particular metrics.

Nevertheless, by looking at the distribution and clustering of markings, we can arrive at some

important plausible conclusions. The most interesting result, which I drew from both the

detailed results listed in the previous sections and the summary in Table 8-7, is the similarity

of the values among the systems. Across various areas and many different metrics, four systems

developed using wildly different processes score comparably. At the very least, the results

indicate that the structure and internal quality attributes of a large and complex working

software artifact, will represent first and foremost the formidable engineering requirements of

its construction, with the influence of process being marginal, if any. If you're building a real-

world operating system, a car's electronic control units, an air traffic control system, or the

software for landing a probe on Mars it doesn't matter if you're managing a proprietary

software development team or running an open source project: you can't skimp on quality.

This does not mean that process is irrelevant, but that processes compatible with the artifact's

requirements lead to roughly similar results. In the field of architecture this phenomenon has

been popularized under the motto “form follows function” [Small 1947].

One can also draw interesting conclusions from the clustering of marks in particular areas.

Linux excels in various code structure metrics, but lags in code style. This could be attributed

to the work of brilliant motivated programmers who aren't, however, effectively managed to

pay attention to the details of style. In contrast, the high marks of WRK in code style and low

marks in code structure could be attributed to the opposite effect: programmers who are

effectively micro-managed to care about the details of style, but are not given sufficient creative

freedom to develop techniques, design patterns, and tools that would allow them to conquer

large-scale complexity.

The high marks of OpenSolaris in preprocessing could also be attributed to programming

discipline. The problems from the use of the preprocessor are well-known, but its allure is

seductive. It is often tempting to use the preprocessor to create elaborate domain-specific

programming constructs. It is also often easy to fix a portability problem by means of

conditional compilation directives. However, both approaches can be problematic in the long

run, and we can hypothesize that in an organization like Sun programmers are discouraged

from relying on the preprocessor.

A final interesting cluster appears in the low marks for preprocessor use in the FreeBSD kernel.

This could be attributed to the age of the code base in conjunction with a gung-ho programming

attitude that assumes code will be read by developers at least as smart as the one who wrote

it. However, a particularly low level of namespace pollution across the FreeBSD source code

could be a result of using the preprocessor to set up and access conservatively scoped data

structures.

Despite various claims regarding the efficacy of particular open or close-source development

methods, we can see from the results that there is no clear winner (or loser). One system with

a commercial pedigree (OpenSolaris) has the highest balance between positive than negative

marks. On the other hand, WRK has the largest number of negative marks, while OpenSolaris

has the second lowest number of positive marks. Looking at the open source systems, although

FreeBSD has the highest number of negative marks and the lowest number of positive marks,

Linux has the second highest number of positive marks. Therefore, the most we can read from

the overall balance of marks is that open source development approaches do not produce

software of markedly higher quality than proprietary software development.

I wish to thank Microsoft, Sun, and the members of the FreeBSD and Linux communities for

making their source code available in a form that allows analysis and experimentation. I also

thank Fotis Draganidis, Robert L. Glass, Markos Gogoulos, Georgios Gousios, Panos Louridas,

and Konstantinos Stroggylos for their help, comments, and advice on earlier drafts of this work.

This work was partially funded by the European Community's Sixth Framework Programme

under the contract IST-2005-033331 “Software Quality Observatory for Open Source Software

(SQO-OSS)”.

I've been a source code committer in the FreeBSD project since 2003, I have participated as an

invited guest in three Microsoft-sponsored academic initiatives, and I've been using all four

systems for more than a decade.

[Cannon et al.] , Cannon, L. W., and . others. Recommended C style and coding standards.

http://sunland.gsfc.nasa.gov/info/cstyle.html.

[Cant et al. 1995] Cant, S. N., D. R. Jeffery, and B. L. Henderson-Sellers (1995, June). A

conceptual model of cognitive complexity of elements of the programming process.

Information and Software Technology 37(7), 351–362.

[Capiluppi and Robles 2007] , Capiluppi, A., and G. Robles (Eds.) (2007, May). FLOSS '07:

Proceedings of the First International Workshop on Emerging Trends in FLOSS Research

and Development. IEEE Computer Society.

[Chidamber and Kemerer 1994] Chidamber, S. R., and C. F. Kemerer (1994). A metrics suite

for object oriented design, http://dx.doi.org/10.1109/32.295895. IEEE Transactions on

Software Engineering 20(6), 476–493.

[Coleman et al. 1994] Coleman, D., D. Ash, B. Lowther, and P. W. Oman (1994). Using metrics

to evaluate software system maintainability, http://dx.doi.org/10.1109/2.303623. Computer

27(8), 44–49.

[Cusumano and Selby 1995] , Cusumano, M. A., and R. W. Selby (1995). Microsoft Secrets.

New York: The Free Press.

[Dickinson 1996] K. Dickinson (1996). Software process framework at Sun,

10.1145/240819.240830. StandardView 4(3), 161–165.

[Feller 2005] , FellerJ. (Ed.) (2005). 5-WOSSE: Proceedings of the Fifth Workshop on Open

Source Software Engineering. ACM Press.

[Feller and Fitzgerald 2001] , Feller, J., and B. Fitzgerald (2001). Understanding Open Source

Software Development. Reading, MA: Addison-Wesley.

[Feller et al. 2005] , Feller, J., B. Fitzgerald, S. Hissam, and K. Lakhani (Eds.) (2005).

Perspectives on Free and Open Source Software. Boston: MIT Press.

[Fitzgerald and Feller 2002] Fitzgerald, B., and J. Feller (2002). A further investigation of open

source software: Community, co-ordination, code quality and security issues, 10.1046/j.

1365-2575.2002.00125.x. Information Systems Journal 12(1), 3–5.

[Gill and Kemerer 1991] Gill, G. K., and C. F. Kemerer (1991). Cyclomatic complexity density

and software maintenance productivity, http://dx.doi.org/10.1109/32.106988. IEEE

Transactions on Software Engineering 17(12), 1284–1288.

[Glass 1999] R. L. Glass (1999, January/February). Of open source, Linux ... and hype. IEEE

Software 16(1), 126–128.

[Halstead 1977] , M. H. Halstead (1977). Elements of Software Science. New York: Elsevier

New Holland.

[Harbison and Steele Jr. 1991] , Harbison, S. P., and G. L. Steele Jr. (1991). C: A Reference

Manual Third ed.. Englewood Cliffs, NJ: Prentice Hall.

[Henry and Kafura 1981] Henry, S. M., and D. Kafura (1981). Software structure metrics based

on information flow. IEEE Transactions on Software Engineering SE-7(5), 510–518.

[Hoepman and Jacobs 2007] Hoepman, J. H., and B. Jacobs (2007). Increased security through

open source, http://doi.acm.org/10.1145/1188913.1188921. Communications of the ACM

50(1), 79–83.

[Izurieta and Bieman 2006] Izurieta, C., and J. Bieman (2006). The evolution of FreeBSD and

Linux. In ISESE '06: Proceedings of the 2006 ACM/IEEE International Symposium on Empirical

Software Engineering, pp. 204–211. ACM Press.

[Jrgensen 2001] N. Jrgensen (2001, October). Putting it all in the trunk: Incremental software

development in the FreeBSD open source project, 10.1046/j.1365-2575.2001.00113.x.

Information Systems Journal 11(4), 321–336.

[Kernighan and Plauger 1978] , Kernighan, B. W., and P. J. Plauger (1978). The Elements of

Programming Style Second ed. New York: McGraw-Hill.

[Kuan 2003] J. Kuan (2003, January). Open source software as lead user's make or buy

decision: A study of open and closed source quality. In Second Conference on The Economics of

the Software and Internet Industries.

[Li et al. 2006] Li, Z., S. Lu, S. Myagmar, and Y. Zhou (2006). CP-miner: Finding copy-paste

and related bugs in large-scale software code, 10.1109/TSE.2006.28. IEEE Transactions on

Software Engineering 32(3), 176–192.

[McCabe 1976] T. J. McCabe (1976). A complexity measure. IEEE Transactions on Software

Engineering 2(4), 308–320.

[McConnell 2004] , S. C. McConnell (2004). Code Complete: A Practical Handbook of Software

Construction second ed. Redmond, WA: Microsoft Press.

[Parnas 1972] D. L. Parnas (1972, December). On the criteria to be used for decomposing

systems into modules. Communications of the ACM 15(12), 1053–1058.

[Paulson et al. 2004] Paulson, J. W., G. Succi, and A. Eberlein (2004, April). An empirical study

of open-source and closed-source software products. IEEE Transactions on Software

Engineering 30(4), 246–256.

[Polze and Probert 2006] Polze, A., and D. Probert (2006). Teaching operating systems: The

Windows case. In SIGCSE '06: Proceedings of the 37th SIGCSE Technical Symposium on Computer

Science Education, pp. 298–302. ACM Press.

[Rigby and German 2006] , Rigby, P. C., and D. M. German (2006, January). A preliminary

examination of code review processes in open source projects. University of Victoria. http://

helium.cs.uvic.ca/thread.html/Rigby2006TechReport.pdf.

[Salus 1994] , P. H. Salus (1994). A Quarter Century of UNIX. Boston, MA: Addison-Wesley.

[Samoladas et al. 2004] Samoladas, I., I. Stamelos, L. Angelis, and A. Oikonomou (2004). Open

source software development should strive for even greater code maintainability, http://

doi.acm.org/10.1145/1022594.1022598. Communications of the ACM 47(10), 83–87.

[Small 1947] , SmallH.A. (Ed.) (1947). Form and Function: Remarks on Art by Horatio

Greenough. Berkeley and Los Angeles: University of California Press.

[Sowe et al. 2007] , Sowe, S. K., I. G. Stamelos, and I. Samoladas (Eds.) (2007). Emerging Free

and Open Source Software Practices. Hershey, PA: IGI Publishing.

[Spencer and Collyer 1992] Spencer, H., and G. Collyer (1992, June). #ifdef considered

harmful or portability experience with C news. In AdamsR. (Ed.), Proceedings of the Summer

1992 USENIX Conference, Berkeley, CA, pp. 185–198. USENIX Association.

[Spinellis 2003] D. Spinellis (2003, November). Global analysis and transformations in

preprocessed languages, doi:10.1109/TSE.2003.1245303. IEEE Transactions on Software

Engineering 29(11), 1019–1030.

[Spinellis 2006] , D. Spinellis (2006). Code Quality: The Open Source Perspective. Boston,

MA: Addison-Wesley.

[Spinellis 2008] D. Spinellis (2008, May). A tale of four kernels. In Schäfer, W., M. B. Dwyer,

and V. Gruhn (Eds.), ICSE '08: Proceedings of the 30th International Conference on Software

Engineering, New York, pp. 381–390. Association for Computing Machinery.

[Spinellis 2010] D. Spinellis (2010, April). CScout: A refactoring browser for C, 10.1016/j.scico.

2009.09.003. Science of Computer Programming 75(4), 216–231.

[Spinellis and Szyperski 2004] Spinellis, D., and C. Szyperski (2004, January/February). How

is open source affecting software development?, doi:10.1109/MS.2004.1259204. IEEE

Software 21(1), 28–33. Guest Editors' Introduction: Developing with Open Source Software.

[Stallman et al. 2005] , Stallman, R., and . others (2005, December). GNU coding standards.

http://www.gnu.org/prep/standardstoc.html.

[Stamelos et al. 2002] Stamelos, I., L. Angelis, A. Oikonomou, and G. L. Bleris (2002). Code

quality analysis in open source software development, 10.1046/j.

1365-2575.2002.00117.x. Information Systems Journal 12(1), 43–60.

[Stol et al. 2009] Stol, K. J., M. A. Babar, B. Russo, and B. Fitzgerald (2009). The use of empirical

methods in open source software research: Facts, trends and future directions. In FLOSS '09:

Proceedings of the 2009 ICSE Workshop on Emerging Trends in Free/Libre/Open Source Software

Research and Development, Washington, DC, USA, pp. 19–24. IEEE Computer Society.

[Tanenbaum 1987] , A. S. Tanenbaum (1987). Operating Systems: Design and

Implementation. Englewood Cliffs, NJ: Prentice Hall.

[The FreeBSD Project 1995] , The FreeBSD Project (1995, December). Style---Kernel Source

File Style Guide. The FreeBSD Project. FreeBSD Kernel Developer's Manual: style(9).

Available online http://www.freebsd.org/docs.html (January 2006).

[Torvalds and Diamond 2001] , Torvalds, L., and D. Diamond (2001). Just for Fun: The Story

of an Accidental Revolutionary. New York: HarperInformation.

[von Krogh and von Hippel 2006] vKrogh, G., and E. vHippel (2006, July). The promise of

research on open source software, 10.1287/mnsc.1060.0560. Management Science 52(7),

975–983.

[Yu et al. 2006] Yu, L., S. R. Schach, K. Chen, G. Z. Heller, and J. Offutt (2006). Maintainability

of the kernels of open source operating systems: A comparison of Linux with FreeBSD,

NetBSD and OpenBSD, 10.1016/j.jss.2005.08.014. Journal of Systems and Software 79(6),

807–815.

[Yu et al. 2004] Yu, L., S. R. Schach, K. Chen, and J. Offutt (2004). Categorization of common

coupling and its application to the maintainability of the Linux kernel, 10.1109/TSE.

2004.58. IEEE Transactions on Software Engineering 30(10), 694–706.

