
 

 
Copyright is held by the author/owner(s). 
SPLASH’12, October 19–26, 2012, Tucson, Arizona, USA. 
ACM 978-1-4503-1563-0/12/10. 

Panel 

Software Tools Research: 
A Matter of Scale and Scope – or Commoditization? 

Steven Fraser 

Director, Cisco Research Center 
Cisco Systems, San Jose 

sdfraser@acm.org 

Kendra Cooper 

Associate Professor 
UT Dallas 

kendra.m.cooper@gmail.com 

Jim Coplien 

Software Architecture and Agile Consultant
Gertrude & Cope 

jcoplien@gmail.com 

Ruth Lennon 

Lecturer, Letterkenny 
Institute of Technology 

ruth.lennon@lyit.ie 

Ramya Ravichandar 

Software Engineer 
Cisco Systems, San Jose 

raravich@cisco.com 

Diomidis Spinellis 

Professor, Athens University of 
Economics and Business 

dds@aueb.gr 

Giancarlo Succi 

Dean and Professor 
Free University Bolzano-Bozen 

Giancarlo.Succi@unibz.it 

Abstract  

Tools emerge as the result of necessity – a job needs to be 
done, automated, and scaled.  In the “early days” – compilers, 
code management, bug tracking, and the like – resulted in mostly 
local home-grown tools – and when broadly successful - spawn 
(from either industry or university origins) independent tools 
companies – for example Klocwork from Nortel and Coverity 
from Stanford University. This panel will bring together academ-
ics and industry professionals to discuss challenges in tools re-
search. 
 
Categories and Subject Descriptors   
K.0 Computing Milieux  

General Terms Management, Design, Economics,  
Experimentation, Standardization. 

Keywords  Tools, Process, Research 

1. Steven Fraser 

STEVEN FRASER joined the Cisco Research Center as Director 
in July 2007 with responsibilities for fostering university research 
collaborations, managing PhD recruiting, and nurturing technol-
ogy transfer. Prior to joining Cisco Research, Steven was a Senior 
Staff member of Qualcomm’s Learning Center in San Diego, 
leading software learning programs and creating the corporation’s 
internal technical conference (the QTech Forum). Steven held a 
variety of technology strategy roles at BNR and Nortel including: 
Process Architect, Senior Manager (Disruptive Technology and 
Global External Research), and Advisor (Design Process Engi-
neering). In 1994 he spent a year as a Visiting Scientist at the 
Software Engineering Institute (SEI) collaborating with the “Ap-

plication of Software Models” project on the development of 
team-based domain analysis (software reuse) techniques. Fraser is 
the Panels Chair for XP2013 and the Publicity Chair for ESEC 
2013. He was the Corporate Support Chair for OOPSLA’08 and 
OOPSLA’09. He was the Tutorial Chair for XP2008 and the 
Tutorial Co-Chair for ICSE’09. Fraser holds a doctorate in EE 
from McGill University in Montréal – and is a senior member of 
the ACM and the IEEE. 

 
Based on the SPLASH 2012 theme of “New Tools for Soft-

ware” topics for panel discussion are likely to include: 
 What are the principal challenges in tools R&D?    
 What are the challenges assessing and improving user 

satisfaction (e.g. small sample populations, or popula-
tions lacking requisite variety)? 

 What are the appropriate measures of tool value (usa-
bility, configurability, support, cost, stability, etc.). 

 How quickly can tools be commoditized – and does this 
tend to improve (or reduce) tool capability? 

 

2. Kendra Cooper 

KENDRA COOPER is an Associate Professor in the Department 
of Computer Science at The University of Texas at Dallas; she has 
an Adjunct faculty position at the University of Calgary. She 
received her Ph.D. in Electrical and Computer Engineering from 
The University of British Columbia. She has published exten-
sively in journals, conferences, symposia, and workshops and 
serves on numerous program committees and editorial boards. 
Cooper has worked in the early phases of the software and sys-
tems engineering of large-scale, complex systems in industrial and 
academic settings. Her research interests center on modularization 
and re-use issues in requirements engineering/architecture for 
adaptive systems and engineering education.  She has investigated 
these issues using a variety of paradigms including component-, 
aspect-, agent-, and recently cloud-based engineering. Software 
tools research is a matter of scale and scope (in other words, what 

59



is the tool research supposed to accomplish?). It is also a matter of 
the development environment – where and by whom is the tool 
research being conducted? 

  
Software tools research is conducted in a variety of settings, 

including academia, research labs, industry, and open source 
projects. In academia tools are often developed by research stu-
dents as proof of concept prototypes; they are used in the valida-
tion effort for their proposed solution to a problem. The students 
need the tool as part of their research and are motivated to develop 
them: the tool is needed for validation; validation is needed to 
demonstrate the value of their solution; demonstrated value is 
needed for a successful defense, graduation, and then “getting a 
life”. The scope and scale of these prototypes are often quite 
narrow - they are usually intended to provide specific capabilities; 
they are unlikely to be extensible, scalable, easy to use, and so on. 
Tool teams in industry or research labs are staffed with experi-
enced, paid professionals, who create larger, more general tools in 
a team-based, managed environment. Open-source tools are de-
veloped by volunteers – enthusiasts seeking to extend and con-
tribute their expertise to the broader community. 

If we want to go beyond proof of concept, prototype tools for 
individual research projects in academia, for example, to establish 
their place in the community as The School That Developed Tool 
X, is it possible to move towards team-based, managed develop-
ment or an open-source approach? I’ve been trying the former on 
the R&D of a tool. The students (M.Sc. in computer science) work 
on the project as team members to gain practical development 
experience and improve their resumes. The students are not paid 
with salaries; they sign up for the course as an elective. Over the 
last five terms, a number of challenges have become clear when 
trying to adopt a more industry-like model in academia. For ex-
ample: 

Some of the challenges seem relatively straightforward to ad-
dress. For example, graded homework assignments to build tech-
nical and soft skills have been included in the course; research 
assistants have been hired to reduce the impact of the turnover by 
becoming a repository of knowledge about the project. Overall, 
however, the productivity of the industry-like teams has not been 
strong. Recently, I’ve been trying a more open-source like ap-
proach, where an individual student works on one specific prob-
lem.         

3. Jim Coplien 

JIM COPLIEN is an old C++ shark who now does world-wide 
consulting on Agile software development methods and architec-
ture. He is one of the founders of the software pattern discipline, 
and his organizational patterns work is one of the foundations of 
both Scrum and XP. He is a Certified Scrum Trainer and a Mem-
ber Emeritus of the Hillside Group. 

 
He currently works for Gertrud & Cope in Denmark, is a part-

ner in the Scrum Foundation, a Director of Scrum Tide and the 
Product Owner for Scrum Knowsy®. Together with Gertrud 
Bjørnvig, he has written a book on Lean Software Architecture 
and Agile Software Development.  

When I visited the temples in Nara several years ago I learned 
that the craftsmen who built them, and those who still maintain 
them, start their work by building their own tools. I have found 
that the same has been true in the most memorable of my software 
experiences over the years, because general-purpose tools are 
often only suitable for general-purpose work and are never ideal 
for any job in particular. In Bell Labs we wrote our own compilers 

because there were no commercial compilers that could scale to 
our needs or that were of high enough quality to meet the stringent 
engineering constraints of continuous-running software. We all 
have frequently built our own tools for custom tasks. These are 
the tools worthy of dialog and focus; commodity tools form an 
important but uninteresting backdrop. And most tools are com-
modities.  

Most Agile tools suffer generation rot. Many of the tools that 
are the darlings of upstart Scrum teams are based on pre-Agile 
building blocks and pre-Agile thought. Few of the household 
name Agile support tools truly support what Agile development 
needs. While trumpeting support for communication they in fact 
get in its way. The tools are often used in under-engineered envi-
ronments whose sluggish performance frustrates users until they 
are lulled into submission and resignation to poor performance. 
Few of them are able to capture the complex requirement relation-
ships discovered during the elaboration of user stories. Capturing 
user stories is almost useless; capturing their detailing is impor-
tant; structuring requirements in a way that drives high-ROI back-
logs is crucial; mapping them onto a tool ideologically suited to 
capturing old-fashioned requirements is just stupid; believing that 
one metaphor and organization fits all or that it easily can be 
parameterized is naïve. Every Agile shop is compromised by the 
lack of an ideal fit between its goals and its tools, but instead of 
working to improve the tools, Agilists seem to celebrate their 
quirkiness. The great tools are home-grown.  

In the Toyota Production System traditions at the roots of 
Scrum, high-order tools are used only to automate proven manual 
processes. Few Agile tools used in contemporary software shops 
emerge from optimized manual processes; they more often replace 
earlier dysfunctional processes. What’s worse is that because of 
organizational politics or “formal envy,” these tools often replace 
perfectly good manual processes. We’re an industry that uses 
tools for tools’ sake, in large part because almost all of us build 
tools. But a fool with a tool is still a fool. 

A commodity tool bought off a shelf and brought into a devel-
opment context is either de-contextualized or primitive by neces-
sity. We in fact need commodity tools: the compilers, editors, and 
operating systems are the saws and hammers of our trade. Most of 
what was called a “tool” in the past generation is a commodity 
tool today: True power tools are generally done in-house because 
they rely heavily on business expertise. It’s interesting to note that 
commodity tools are becoming increasingly invisible and that our 
need for tools as such is decreasing. As a user of XCode and it 
storyboarding facility, I haven’t directly used a compiler or con-
figuration management tool in years. XCode, while a tool, proba-
bly doesn’t fit the category of being a commodity; such animals in 
the burgeoning tool zoo are particularly worthy of discussion. 
Beyond that, I fail to appreciate why SPLASH would have a panel 
that revolves around commodity items. I rarely see organizations 
get in trouble for what are tool problems. 

There are some “tools” that transcend groups and organi-
zations, and among them are games. A game is a tool that can 
support reflection, growth, and the proper esprit de corps in an 
Agile organization. We have recently launched a tool called 
Scrum Knowsy® designed to assess and build alignment within a 
Scrum team and to allow each team to assess its collective align-
ment to community norms. If you’ve got to have a tool, it might 
as well be fun and support the Agile agenda. 

4. Ramya Ravichandar 

RAMYA RAVICHANDAR is currently leading the Agile Lean at 
Cisco program at Cisco Systems, Inc.  She is focused on evangel-

60



izing emerging software practices, researching on enterprise-level 
initiatives, and fostering an Agile Lean community in Cisco. 
Related to this she has presented in Agile 2010, and XP 2012 
conferences. Her other interests span software quality, processes, 
change-tolerant systems, and requirements engineering.  She has a 
Ph.D. in Computer Science from Virginia Tech and is a member 
of IEEE Computer Society. 

  
Oh so appealing is the nifty blazingly fast in-house tool! Com-

pare it with the magnificent full-featured enterprise-level solution. 
What you choose, depends on where you sit in the food chain. 
Therein lies the crux of the argument about tooling in our indus-
try. 

 In this distributed environment where teams are connected 
through tools, there is a danger of the tools becoming the sole 
connectors. They are often used in lieu, and not as an aid to good 
software engineering. And can you blame the engineer, for using 
the aggressively marketed silver bullet? A tool's success should be 
driven by its effectiveness and not measured by a fixed deploy-
ment schedule; a challenge in this metrics-driven environment of 
instant gratification.  

Tools are bound to influence the process.  It is a possibility 
that when both become so intertwined we are in the danger of 
overlooking other innovations. Perhaps what we need is a tool 
litmus test. How do we decide that a tool is right? Is it a trade-off 
between: hidden costs vs. productivity gains, or resolving singular 
issues vs. one-size-fits-all approach?  The answer lies somewhere 
in between. 

5. Ruth Lennon 

RUTH LENNON has worked for Letterkenny Institute of Tech-
nology for over 14 years in lecturing and research activities. Prior 
to joining LYIT, Ruth worked with a software company develop-
ing software in Delphi. Ruth is currently working on research on 
Software As A Service and BYOD. Ruth is one of the Directors of 
InfoSecurity Ireland. Ruth has been an active participant in the 
ACM's OOPSLA workshops and BOF's since 2005. Ruth is a 
member of the ACM and IEEE and actively encourages women to 
work in all aspects of engineering. 

 
I represent an important part of the "software tools research" 

community -- a "user" of the tools.  In the work I describe in my 
BYOD and Cloud paper, my institution is trying to use a wide 
variety of commercial and open source tools in a challenging 
environment.  We are trying to keep costs down, we are dealing 
with wide variations in experience levels among learners and 
staff, and many of the existing tools create some difficult and 
unnecessary obstacles to deployment. The range of specifications 
of PCs in our institute leads to the need to consider issues such as 
ease of deployment, deployment in a cloud environment, deploy-
ment on a low end PCs and legacy operating systems, interopera-
bility with other tools, documentation, training, ability to export 
useful data in a standard data format, etc. I represent a unique 
body of system users in that some are computer experts while 
others simply want to use the tools with the greatest level of sim-
plicity. The software and hardware tools requirements for users 
and systems administrators can be quite disparate and this can 
prove challenging. Take as one example the need to provide ac-
cess to Fire Modelling Software which has not changed much in 
the last 10 years. Some software still restricts licenses via dongles 
and may be significantly processor heavy. The Fire laboratory 
equipment software exports data onto a Windows 95 PC and has 
not yet be upgraded to keep with modern systems. 

One problem with industry-academic research partnerships:  
they are often narrowly focused on research areas that are less 
likely to produce a real paradigm shift.  There are some new 
innovative ideas that are “easy to launch” as a new product, such 
as web apps, open-source toolkits, and other products that are 
centered around new innovative algorithms but in relatively con-
ventional packaging.  The most creative and different new ideas 
are the most difficult for established industry product groups to 
embrace.  It is already difficult for most product development 
groups to accept an “escaped from the lab” product idea from an 
internal corporate research organization, it is doubly difficult to 
build on the work of graduate students in a corporate environ-
ment. On the other hand, if a partnership is done right, there are 
plenty of benefits going in both directions.  In particular, both 
sides of an industry-academic partnership will usually bring in 
useful ideas about how to convert an innovation into a marketable 
product.  

6. Diomidis Spinellis 

DIOMIDIS SPINELLIS is a Professor in the Department of Man-
agement Science and Technology at the Athens University of 
Economics and Business, Greece.  From 2009 to 2011 he served 
as the Secretary General for Information Systems at the Greek 
Ministry of Finance.  His research interests include software 
engineering, computer security, and programming languages.  He 
has written two award-winning, widely-translated books: Code 
Reading and Code Quality: The Open Source Perspective.  He is a 
member of the IEEE Software editorial board, authoring the regu-
lar “Tools of the Trade” column.  Spinellis is the author of many 
open-source software tools, packages, and libraries.  Some tools 
he has developed include the UMLGraph declarative UML draw-
ing engine, the CScout refactoring editor for huge complex sys-
tems written in C, and the ckjm tool, which efficiently calculates 
Chidamber and Kemerer object-oriented metrics in Java pro-
grams. His implementation of the Unix sed stream editor is part of 
Apple’s Mac OS X and all BSD Unix distributions.  Spinellis 
holds a M. Eng. in Software Engineering and a PhD in Computer 
Science, both from Imperial College London. He is senior mem-
ber of the ACM and the IEEE. 

  
The development of production-quality software tools is be-

coming an increasingly difficult task for individual researchers. 
First, the application domains are becoming more complex. This 
includes language specifications, interfaces, and development 
frameworks. Kernighan and Ritchie’s The C Programming Lan-
guage (1988) was 274 pages long, whereas Stroustrup’s The C++ 
Programming Language (2000) stands at a hefty 1030 pages. This 
rising complexity is reflected in the size of the corresponding 
tools. The 7th Edition Unix C compiler consisted of about 14k 
lines of code, whereas GCC 4.2, at 1.5 million lines, is two orders 
of magnitude larger. We can find at least one order of magnitude 
difference between the original tools and their current ancestors 
across the board; consider for instance RCS (1982, 25k lines) 
versus the current version of git (2012, 449k lines). Distribution 
and support is nowadays also more demanding. Whereas Ken 
Thompson mailed Unix source code magnetic tapes to his friends, 
labeling them simply “Love, ken”, nowadays researchers develop-
ing tools are expected to maintain a project web site, support 
binary packages for diverse operating system distributions, pro-
vide a bug tracking service, answer questions on a forum, and 
respond to patch pull requests.  

Thankfully, a number of countervailing factors help us keep 
the situation in balance. Modern software frameworks, like Java 

61



and .NET, and libraries, like Boost, make modern code considera-
bly more expressive. Mature open-source offerings can dramati-
cally reduce the implementation effort required for a tool’s front-
end (e.g. LLVM), processing (MINISAT), and presentation 
(GraphViz). Robust package management systems enable the 
painless installation of tools with complex dependencies on exter-
nal software. Cloud offerings, like GitHub, Google Groups, and 
StackExchange, simplify collaboration, bug tracking, wiki 
maintenance, and end-user support. The open source software 
community often stands ready to embrace a useful tool, offering 
extensions, bug fixes, and support. Finally, nowadays tool devel-
opers can often create plugins for a larger framework, like 
Eclipse, rather than build a tool from scratch.  

The challenge for software tool researchers is to avoid being 
intimidated and turned-off by the large scope and complexity 
associated with modern tool development, learn how to harness 
the available countervailing factors, and benefit from them. Cur-
riculum developers and mentors can help budding researchers by 
bringing them in contact with modern tool development practices.  

7. Giancarlo Succi 

GIANCARLO SUCCI is Professor and Dean of the Faculty of 
Computer Science and Director at the Center for Applied Soft-
ware Engineering at the Free University of Bozen-Bolzano. Be-
fore moving to Bolzano he held several academic appointments 
around the world and is a global consultant for software compa-
nies and public institutions. Giancarlo Succi is a Fulbright 
Scholar. 

 
The evolution in the software industry has been possible be-

cause of the presence of smart software development tools, which 
enabled the production or more complex systems and of better 
tools. For instance, it would be unimaginable today to develop the 
simplest native Android application writing the code using vi and 
running by hand or via some sort of make the compilation proc-
ess. Moreover, it would not be conceivable to have an IDE like 
Eclipse without first having the experience of emacs, which in 
turn draws from the experience of vi.   

Still, the research done on how people use tools is very limited 
and the design of new tools does follows more personal tastes and 
fads rather than a systematic empirical process. A major im-

provement toward a better understanding of how tools are used 
has been the introduction of AISEMA (Automated In-Process 
Software Engineering Measurement and Analysis) systems, which 
track non-invasively the activities of developers, including the 
tools they use [1]Error! Reference source not found.. However, 
so far it has still remained an open question how to actually ana-
lyze data coming from AISEMA systems on tools usage, especial-
ly trying to understand the usefulness and the usage of each tool 
together with the mutual interactions between tools. To this end 
specific visualization techniques could be employed, like the ones 
proposed in [2]. Such visualization enables the immediate under-
standing of the roles that specific tools have in software develop-
ment and how people then use such tool, evidencing for instance 
that Pair Programming increases significantly the permanence in 
tools before doing context switching triggering higher level of 
attention, which then result in better work [3]. This visualization 
also evidences in a case study a fact always known in the software 
engineering community but never rigorously experimented: that 
only a small fraction of the installed tools are effectively used [4]. 

 Altogether, more systematic, empirical, let me say “scientific” 
research has to done in this direction, determining empirically the 
impact of software tools, and also trying to understand how dif-
ferent tools mutually interact and contribute, as a cluster and not 
just individually, to the production of software systems. 

 
References 
[1] Ilenia Fronza, Alberto Sillitti, Giancarlo Succi, Jelena Vlasenko, Does 

Pair Programming Increase Developers’ Attention? Industrial Track 
of ESEC/FSE2011, Szeged, Hungary, Sept 2011 

[2] Alberto Sillitti, Andrea Janes, Giancarlo Succi, and Tullio Vernazza. 
Collecting, integrating and analyzing software metrics and personal 
software process data. In EUROMICRO ’03: Proceedings of the 29th 
Conference on EUROMICRO, page 336, Washington, DC, USA, 
2003. IEEE Computer Society. 

[3] Alberto Sillitti, Giancarlo Succi, Jelena Vlasenko, Toward a better 
understanding of tool usage (NIER Track), Proceedings of the 
ICSE2011 Conference, Honolulu, Hawaii, May 2011. 

[4] Alberto Sillitti, Giancarlo Succi, Jelena Vlasenko, Understanding the 
impact of Pair Programming on Developers Attention, Proceedings of 
the ICSE2012 Conference, Zurich, Switzerland, June 2012. 
 

 

62




