Java Performance Evaluation Using External Instrumentation

Georgios Gousios, Diomidis Spinellis
Department of Management Science and Technology
Athens University of Economics and Business
Athens, Greece, 155 62
Email: {gousiosg,dds}@aueb.gr

Abstract

The performance of programs written in the Java pro-
gramming language is not trivial to analyse. The Java Vir-
tual Machine hides the details of bytecode execution while
not providing an accessible profiling mechanism. Most
tools used for Java performance evaluations are based on
sampling and only present engineers with sampled data
aggregations. In this paper, we present the Java DTrace
Toolkit, a collection of scripts that is specifically designed
to assist engineers in identifying the roots of various perfor-
mance problems observed with other tools.

1. Introduction

In recent years, there has been a trend toward develop-
ing and running Internet and network servers using safe
languages and processes-level Virtual Machine (VM)-based
runtime environments. This trend is justified; vMs offer a
more secure execution environment than native platforms,
while they allow programs to be portable. Those facilities
come at a cost: process-level VMs introduce several lay-
ers of indirection in the chain of management of computing
resources. VM runtime environments offer services comple-
mentary to those of operating systems, such as processing
time sharing and pre-emptive multithreading, memory man-
agement, and 1/0 request handling. Despite the advances
in automatic memory management and Just-In-Time (JIT)
compilation, which brought the number crunching abilities
of process VMs to nearly-native levels, there is a very small
number, if any, of VM-based server software applications
that can match the performance of widely deployed, na-
tively compiled network servers, such as Apache or Samba.

Apart from the 1/0 performance handicap that current re-
source sharing mechanisms inflict on Java programs, there
is another factor that contributes to the situation described
above: the performance of Java programs is notoriously
difficult to analyse, especially when considering layered,

network-centric systems. In this paper, we present the Java
DTrace Toolkit (JDT) a collection of tools that exploit the
DTrace instrumentation facilities, and more specifically the
Java probe provider, to gather performance and debugging
information from live programs. We also present examples
of how each tool can be used to evaluate the performance of
Java software.

The remainder of the paper is organised as follows: in
Section 2, we present an overview of the tools and tech-
niques used for monitoring the performance of Java pro-
grams. In Section 3, we present the collection of tools we
have developed and give motivating examples of their use.
Finally, in Sections 4 and 5 we briefly describe the tool’s
implementation and discuss its strenghts and weaknesses.

2. Java Performance Monitoring

Monitoring the performance of Java systems, or man-
aged runtime systems in general, is considered a difficult
task. Performance-wise, the JVM is a black box to the en-
gineer. In native systems, it is straightforward to obtain the
exact distribution of CPU cycles a particular program will
consume even if there are library dependencies, as the de-
veloper has access to both the executed code [8] and directly
to performance monitoring counters on the CPU [2, 1]. Also,
depending on the implementation language, the amount of
memory a program allocates can be traced back to requests,
as memory allocation is performed mostly manually. The

n In Stefanos Gritzalis, Dimitris Plexousakis, and Dionysios Pnev-
matikatos, editors, PCI 2008: 12th Panhellenic Conference on Informatics,
August 2008. IEEE Computer Society. (doi:10.1109/PCI.2008.14)

This is a machine-readable rendering of a working paper draft that led
to a publication. The publication should always be cited in preference to
this draft using the reference in the previous footnote. This material is
presented to ensure timely dissemination of scholarly and technical work.
Copyright and all rights therein are retained by authors or by other copy-
right holders. All persons copying this information are expected to adhere
to the terms and constraints invoked by each author’s copyright. In most
cases, these works may not be reposted without the explicit permission of
the copyright holder.

JVM hides those performance indicators by abstracting the
underlying hardware and employing custom bytecode exe-
cution mechanisms. In addition, different JvMs employ dif-
ferent JIT compilers and different garbage collection algo-
rithms, thus further complicating the understanding of pro-
gram execution flow.

Moreover, the behaviour of the Java execution environ-
ment is not predictable. While in the case of native pro-
grams the only source of disruption in program flow can be
hardware interrupts or signals, in Java a number of events
can lead to non-deterministic behaviour and consequently
to difficulties in assessing performance, especially for short
execution time programs. Firstly, all JVMs use timer-based
method execution sampling to drive the JIT compilation
process: different executions of the same program may re-
sult in different samples being taken and different methods
being compiled [12]. Also, the fact that the JVM relies
on the operating system for scheduling threads on proces-
sors means that different program executions can be sub-
ject to different scheduling plans, which can affect bench-
marking results. Combined differences in JIT compilation
and thread execution can change the benchmark execution
profile, which in turn may affect the frequency of garbage
collections, especially when compilation-driven techniques
such as escape analysis [5] are employed to limit object al-
locations. In reference [7], Georges et al. show that the
difference between the best and mean execution time for a
single benchmark can be as high as 40%.

The majority of profiler tools for Java either rely on
events generated by the JVM [13] or on bytecode instrumen-
tation [9] to gather performance related events, even though
source code based techniques have also been proposed [11].
Current production JvMs emit performance-related events
and enable tools that consume those events to be attached to
them through the 7vM Tool Interface [6]. The Java Manage-
ment Extensions [10] enable access to performance-related
counters in the JVM over a well-defined protocol. A vari-
ety of tools for JVM monitoring and application profiling is
based on either of those protocols. Among the most well
known are the Netbeans profiler, JProfiler and the Web-
sphere console. Those tools can provide a good overview
of application behaviour, but are restricted by the underly-
ing protocol’s inability to extend analysis beyond the JTVM
boundaries.

DTrace [4] is a instrumentation tool that is designed
to enable application and system performance evaluations
with minimal effect. Its strength comes from the fact that
it can combine in a single profiling session data from var-
ious layers of the execution stack, ranging from methods
in a Java program to low-level in-kernel routines. Also,
DTrace can place instrumentation hooks while the system
is running, a feature that can help users identify perfor-
mance problems that only appear under special circum-

stances. Profiling scenarios for DTrace are written in a
custom domain specific language, although the majority of
DTrace-based tools use a scripting language to wrap user
input and format results. A JVM probe provider is available
with recent versions of the Sun JVM.

3. The Java DTrace Toolkit

To address the issues described above, namely the lack of
tools for performance evaluation across different layers of
the Java execution stack and the need to debug performance
problems when they occur, we designed and implemented
the JDT. As its name implies, the JDT is a set of tools based
on DTrace that can help a user identify performance issues
in complex application scenarios. The JDT is designed to
comply with the following functional requirements:

Least possible intervention: The probes should have min-
imal effect to program execution. Specifically, the JDT
explicitly avoids probes that have more than 5 entry
points and defers result aggregation for the end of the
tracing session.

Focused output: The JDT offers runtime switches to filter
captured data that are not of interest to the user.

Connection to live systems: The fact that that JDT is
based on DTrace allows it to connect to live systems.
However, for expensive probes, special start switches
must be enabled in the JVM configuration.

Parseable output: Following the Unix tradition, our tools
can be used in combination with other tools. Special
care was put on producing parseable output.

Table 1 presents an overview of the tools that comprise
the JDT. In the following sections, we describe the design
and the functionality of each individual tool and also pro-
vide examples of each tool’s output.

3.1. jprofiler

The jprofiler program implements a classic appli-
cation profiler: by default, it instruments all program meth-
ods, counts their invocations and returns the number of calls
and their total execution time. On user request, it can in-
strument only specific methods or classes and aggregate the
results by package name. The following code snippet is the
per-package aggregated output of methods required by the
Tomcat web server to serve a static web page. The method
calls to standard Java libraries have been stripped out.

Package cnt
org/apache/coyote/httpll/filters 6
org/apache/catalina/servlets 12

Table 1. DTrace toolkit scripts and their use
Tool

Usage

jprofiler Reports the methods and classes that con-
sume most execution time. Can aggregate re-
sults by package name.

jmemstats Report object allocation statistics. Can ag-
gregate results by package name and filter re-
sults by specific package names.

jlockstat Reports methods initiating locking opera-
tions in native code.

jiosnoop File management statistics: which classes
cause 1/0 traffic?

jcallgraph Display a Java function call graph from Java
to the OS kernel.

jgcsnoop Reports garbage collection statistics: fre-

quency, duration.

org/apache/tomcat/util/http/mapper 14

org/apache/tomcat/util/http 16
org/apache/naming/resources 18
org/apache/catalina/core 23
org/apache/coyote 25
org/apache/coyote/httpll 28
org/apache/catalina/connector 28
org/apache/tomcat/util/buf 51

3.2. jmemstats

Java uses automated memory management to manage
the executed program’s runtime heap. The advantages
of garbage collection include very fast, potentially uncon-
tented, memory allocation, minimal memory fragmenta-
tion, and cache effectiveness. The main disadvantage is that
it consumes computing cycles for memory reclamation and
it stops the execution of application threads while memory
is reclaimed and compacted [3]. However, the negative ef-
fects of garbage collection can be minimized if allocation
rates are constrained. To restrict a program’s memory al-
location rate to the absolute minimum, one has to be care-
ful to select the appropriate data structures for intermediate
results, while also understanding the object allocations per-
formed by external libraries. For example, XML parsers,
GUI toolkits and container objects and are notorious for
poor memory behaviour.

The purpose of the Jmemstats tool is to help develop-
ers to keep track of object allocations and identify the meth-
ods whose allocation rates are high. The main difference of
this tool from other similar tools is that it reports on the
classes that perform excessive allocations, instead of the re-
porting on the types of objects that are allocated. This helps
developers to identify immediately hot allocation sites. The
following extract is from the tool’s output when applied on
the Tomcat web server, displaying the methods that have
allocated the most objects.

Java Method objects alloc

java/lang/StringCoding$StringEncoder.encode 486

java/util/HashMap.newKeyIterator 221

org/[...]/buf/CharChunk.toStringInternal 142
java/io/UnixFileSystem.resolve 131
java/lang/String.substring 122
java/lang/StringCoding$StringDecoder.decode 108
java/net/Socket.getInputStream 100
java/lang/AbstractStringBuilder.expandCapacity 99
java/lang/Object.clone 91
java/io/UnixFileSystem.list 74

3.3. jlockstat

Locking is required to avoid concurrent modification
of common computing resources. Java implements lock-
ing operations at the language level, while current gener-
ation JVMs are able to remove the majority of locks by
deeply analysing the bytecode, thereby increasing perfor-
mance. However, the JVM is often required to access op-
erating system resources which, being shared among pro-
cesses, must protect their critical areas. In several occa-
sions, JVM threads accessing the operating system must be
blocked or even stopped outside of the JVM, which in turn
forces the JVM to switch to another thread or block. In-
voluntary thread switching is known for deteriorating the
performance of Java, for reasons ranging from invalidation
of processor caches to lost opportunities for method optimi-
sation.

The jlockstat tool implements a native level lock
analyser; it uses the DTrace plockstat provider to ex-
tract user space locking operations on mutexes and reader-
writer locks. More interestingly, it correlates the lock ac-
quisition at the native level to the Java method or stack
frame that produced the native call. It can aggregate results
in {Java method, native method} tuples and fil-
ter out locking operations based on user specified package-
based filters. Using this information, the developer can un-
derstand what locking operations are taking place in the na-
tive level and how those affect the execution of Java code.
The following output extract presents the locking operations
at the native library level performed while servicing a series
of web page requests on a Tomcat web server.

Java Method Native cnt
java/io/UnixFileSystem.getBooleanAttributes0 malloc 367
java/io/UnixFileSystem.getBooleanAttributes0 free 363
java/lang/ClassLoader.defineClassl free 288
java/lang/ClassLoader.defineClassl malloc 290
java/io/UnixFileSystem.getLastModifiedTime free 136
java/io/UnixFileSystem.getLastModifiedTime malloc 136
java/io/UnixFileSystem.list readdir64_r 134

3.4. jiosnoop

Current generation JVMs use the operating system ser-
vices to perform 1/0 operations. This means that for each
read or write operation to an 1/0 device, such as a hard disk
or a network card, the JVM thread must be stopped while

the operating system serves the request. If the 1/0 opera-
tions are small and frequent, then the effect in performance
can be disastrous. While the 1/0 interfaces in Java are well
defined and therefore can be instrumented, it is common for
certain types of programs that include external components
or do not have centralised 1/0 facilities to experience poor
performance.

The jiosnoop tool is designed to correlate Java 1/0 op-
erations with operating system I/0 primitives, namely the
read (2), write (2), send(2) and sendfile (2)
system calls. The tool’s output is a table listing of the 1/0
initiating class, the corresponding system call, the number
of times this 1/0 path has been followed, and the total time
spent for 1/0 per path. To the best of our knowledge, the
IDT is the first tool that allows this kind of analysis for Java
1/0.

Java Method syscall cnt
org/apache/coyote/Response.action _so_send 7
org[...]HttpllProcessor.action _read 7
org/[...]OutputStreamOutputBuffer.doWrite _so_send 2
org/[...]HttpllConnectionHandler.processConnect _read 1
org[...]/mapper/Mapper.internalMapWrapper _read 1

3.5. jcallgraph

Java is a dynamic language, in the sense that executable
code can be substituted by code that is loaded at runtime.
In programs featuring complex inheritance or composition
relationships and using reflection to invoke functionality on
runtime-loaded code, it is often difficult to determine the
code path that is executed in a particular context. In such
cases, it is useful to know at runtime the call hierarchy for
a specific method. The jcallgraph tool outputs the call
hierarchy for a user specified Java method both in Java code
and, if the method call results in a native function call, the
call hierarchy in the native context up to the operating sys-
tem boundary. The user can also specify a thread identifier
to monitor invocations of the method in a specific thread.
The Java portion of the call graph for the accept method
of the java.net.ServerSocket class is presented in
the following code extract.

java/net/ServerSocket.accept Call graph

java/net/ServerSocket.accept
java/net/ServerSocket.isClosed
java/net/ServerSocket.isBound
java/net/Socket.<init>
java/lang/Object.<init>
java/lang/Object.<init>
java/net/ServerSocket.implAccept
java/net/Socket.setImpl
java/net/SocksSocketImpl.<init>
java/net/PlainSocketImpl.<init>
java/net/SocketImpl.<init>
java/lang/Object.<init>
[6 entries removed for brevity]
java/lang/Object.<init>
java/lang/Object.<init>
java/net/SocketImpl.setSocket

java/net/InetAddress.<init>
java/lang/Object.<init>
java/io/FileDescriptor.<init>
java/lang/Object.<init>
java/net/ServerSocket.getImpl
java/net/PlainSocketImpl.accept
java/net/PlainSocketImpl.acquireFD
java/net/PlainSocketImpl.socketAccept

3.6. jgcsnoop

Java uses garbage collection to manage heap memory.
The default garbage collector must stop all application
threads in order to operate. To reduce the time spent in
garbage collection, the heap is divided into various mem-
ory zones, while different collection algorithms are used
per zone. As its name implies, the jgcsnoop tool is a
simple script that reports garbage collection invocations, the
affected memory zone and the time required to finish. The
tool’s output monitoring the Tomcat web server can be seen
below.

Memzone ZoneMgr Time

GC: Code Cache (Copy) :15 msec
GC: Eden Space (Copy) :19 msec
GC: Survivor Space (Copy) :19 msec
GC: Tenured Gen (Copy) :19 msec
GC: Perm Gen (Copy) :19 msec
GC: Perm Gen [shared-ro] (Copy) :19 msec
GC: Perm Gen [shared-rw] (Copy) :19 msec

4. Implementation

Due to result and input processing limitations present
in the language used by DTrace for specifying instrumen-
tation scenaria (usually referred to as the D programming
language), the majority of the tools are written as Perl
scripts that encapsulate D programs. The host language
parses command line arguments, starts the profiling ses-
sion and finally parses and aggregates the DTrace tool
output. The Perl scripts themselves are minimal; most
functionality is provided through a shared component, the
DTrace: :Parse Perl library, which we intend to submit
to the CPAN repository.

The DTrace: :Parse can work with two basic types
of DTrace output: aggregation results and stack traces. Ag-
gregations are special D language constructs that collect
thread-specific data during tracing in a hash map struc-
ture per thread. After the end of the profiling session
the data are aggregated using the hash map key to iden-
tify similar data. Stack traces are produced by calling the
jstack () D function in the appropriate probe process-
ing body. The jstack () function produces stack traces
that combine JVM and Java execution frames. Currently,
the DTrace: :Parse library provides methods that oper-
ate on text data and can parse, aggregate, filter, dissect and
correlate related entries.

5. Discussion

The JDT is a generic framework for the evaluation of the
performance of Java applications. As such, it can be used
on a variety of scenaria ranging from identification of per-
formance bottlenecks to examination of application flow.
However, as is the case for most performance evaluation
tools, the tool itself cannot identify performance hotspots,
but only offer hints and insight. An interesting possible use
of the toolkit is the combination of more than one tools in
the same profiling session; for example, the jlockstat
and jiosnoop utilities can be used in parallel to monitor
locking while performing 1/0. Also, the jiosnoop tool
can produce output that can then be fed to jcallgraph
using standard Unix tools to process the intermediate re-
sults, ie. jiosnoop.pllcut -fl -d’ ’|xargs jcallgraph

One of the limitations of the JDT is the fact that the un-
derlying instrumentation tool is only available to the Solaris
operating system and the corresponding probes in version
1.6 of the JVM. The situation however is currently improv-
ing with the recent release of the JVM as open source soft-
ware and the porting of the DTrace framework on other op-
erating systems such as MacOSX and FreeBSD.

The JDT essentially provides an additional layer of data
aggregation and analysis on top of the data collection facili-
ties offered by the DTrace tool. The JIDT does not affect the
runtime behaviour of DTrace in any way, even though the
accuracy of the aggregated data depends solely on the pro-
vided output. Currently, both the DTrace Java probe and the
DTrace tracing output facilities are not able to handle large
volumes of trace data, such as those generated by instru-
menting recursive method invocations, object allocations or
locking operations in concurrent environments. The JDT
can identify and isolate erroneous DTrace output and ex-
clude them for result reporting. Based on our experiments
on a moderately loaded system, 10% of the total tracing out-
put returned by DTrace is incomplete or erroneous; however
as the tracing load increases and especially in multithreaded
environments, the failure rate increases significantly: on a
moderately loaded Tomcat web server instance running in
a virtual machine inside an otherwise idle computer, about
40% of the result traces are unusable. This fact means that
while the JDT is valuable for identifying trends and bottle-
necks, it should not be used for accurate profiling.

6. Conclusion and Future Work

Evaluating the performance of Java code is arguably a
difficult task. The JDT is a collection of tools that enables
developers to identify performance problems, with a par-
ticular emphasis on those problems that concern the co-
operation between the JVM and the operating system. Cur-
rently, we use the JDT along with more specialised DTrace

scripts to show that the JVM co-operation with the operat-
ing system is not optimal. Specifically, we find unnecessary
duplication in the computing resource management duties
between the JVM and the OS and we measure its effects on
the performance of Java programs. Our long term goal is
the creation a Java execution environment that can manage
the computing resources internally.

The JDT will be freely available as open source
software from http://istlab.dmst.aueb.gr/" -
george/sw/ jdt under the Apache license in late 2008.

Acknowledgment This work is partially funded by the
Greek Secretariat of Research and Technology thought,
the Operational Programme COMPETITIVENESS, measure
8.3.1 (PENED), and partially by the European Community’s
Sixth Framework Programme under the contract 1ST-2005-
033331 “Software Quality Observatory for Open Source
Software” (SQ0-0SS)

References

[1] G. Ammons, T. Ball, and J. R. Larus. Exploiting hardware
performance counters with flow and context sensitive profil-
ing. In PLDI ’97: Proceedings of the ACM SIGPLAN 1997
conference on Programming language design and imple-
mentation, pages 85-96, New York, NY, USA, 1997. ACM.

[2] J. M. Anderson, L. M. Berc, J. Dean, S. Ghemawat, M. R.
Henzinger, S.-T. A. Leung, R. L. Sites, M. T. Vandevoorde,
C. A. Waldspurger, and W. E. Weihl. Continuous profiling:
where have all the cycles gone? In SOSP '97: Proceed-
ings of the sixteenth ACM symposium on Operating systems
principles, pages 1-14, New York, NY, USA, 1997. ACM.

[3] S. M. Blackburn, P. Cheng, and K. S. McKinley. Myths and
realities: the performance impact of garbage collection. In
SIGMETRICS 2004/PERFORMANCE 2004: Proceedings
of the joint international conference on Measurement and
modeling of computer systems, pages 25-36. ACM Press,
2004.

[4] B. M. Cantrill, M. W. Shapiro, and A. H. Leventhal. Dy-
namic instrumentation of production systems. In Proceed-
ings of the 2004 USENIX Annual Technical Conference,
pages 15-28. USENIX, 2004.

[5] J.-D. Choi, M. Gupta, M. Serrano, V. C. Sreedhar, and
S. Midkiff. Escape analysis for Java. SIGPLAN Not.,
34(10):1-19, 1999.

[6] R.Filed. JSR 163: Java platform profiling architecture. Java
Community Process, Dec 2004.

[7]1 A. Georges, D. Buytaert, and L. Eeckhout. Statistically rig-
orous Java performance evaluation. In OOPSLA '07: Pro-
ceedings of the 22nd annual ACM SIGPLAN conference
on Object oriented programming systems and applications,
pages 57-76, New York, NY, USA, 2007. ACM.

[8] S. L. Graham, P. B. Kessler, and M. K. Mckusick. Gprof: A
call graph execution profiler. In SIGPLAN ’82: Proceedings
of the 1982 SIGPLAN symposium on Compiler construction,
pages 120-126, New York, NY, USA, 1982. ACM.

(9]

(10]

(11]

[12]

[13]

H. B. Lee and B. G. Zorn. BIT: A tool for instrumenting
Java bytecodes. In Proceedings of the USENIX Symposium
on Internet Technologies and Systems, Monterey, CA, Dec
1997. USENIX.

E. McManus. JSR 255: Java management extensions (JMX)
specification, version 2.0. Java Community Process, Dec
2007.

D. Pearce, M. Webster, R. Berry, and P. Kelly. Profiling with
Aspect]. Software: Practice and Experience, 37(7):747—
777, Jun 2006.

T. Suganuma, T. Yasue, M. Kawahito, H. Komatsu, and
T. Nakatani. Design and evaluation of dynamic optimiza-
tions for a Java Just-In-Time compiler. ACM Trans. Pro-
gram. Lang. Syst., 27(4):732-785, 2005.

D. Viswanathan and S. Liang. Java Virtual Machine Profiler
Interface. IBM Systems Journal, 39(1):82-95, 2000.

