
The SQO-OSS quality model: measurement
based open source software evaluation1,2

Ioannis Samoladas, Georgios Gousios, Diomidis Spinellis and Ioannis Stamelos

Department of Informatics, Aristotle University of Thessaloniki, 541 24, Thessaloniki, Greece.
{ioansam, stamelos}@csd.auth.gr

Department of Management Science and Technology, Athens University of Economics and
Business, 104 34, Athens, Greece. {gousiosg, dds}@aueb.gr

Abstract. Software quality evaluation has always been an important part of
software business. The quality evaluation process is usually based on hier-
archical quality models that measure various aspects of software quality and
deduce a characterization of the product quality being evaluated. The par-
ticular nature of open source software has rendered existing models inap-
propriate for detailed quality evaluations. In this paper, we present a hierar-
chical quality model that evaluates source code and community processes,
based on automatic calculation of metric values and their correlation to a set
of predefined quality profiles.3

Keywords Quality models, automated measurement, software metrics

1. Introduction

One of the main concerns of software engineering is the production of high quality
software systems and thus software quality evaluation has always been a critical
task for software professionals. IT managers often face the problem of evaluating
software in order to decide whether it is suitable for their needs. Additionally,
software houses perform evaluations on the software they develop to decide
whether it has matured enough to be deployed. Evaluations are based on software

1 In Ernesto Damiani and Giancarlo Succi, editors, Open Source Development,
Communities and Quality — OSS 2008: 4th International Conference on Open
Source Systems, pages 237–248. IFIP 20th World Computer Congress, Working
Group 2.3 on Open Source Software, September 2008. (doi:10.1007/978-0-387-
09684-1)
2 This is a machine-readable rendering of a working paper draft that led to a publi-
cation. The publication should always be cited in preference to this draft using the
reference in the previous footnote. This material is presented to ensure timely
dissemination of scholarly and technical work. Copyright and all rights therein
are retained by authors or by other copyright holders. All persons copying this
information are expected to adhere to the terms and constraints invoked by each
author's copyright. In most cases, these works may not be reposted without the
explicit permission of the copyright holder.

3 This work was partially supported by the European Community's Sixth Framework Programme
under the contract IST-2005-033331 ``Software Quality Observatory for Open Source Software
(SQO-OSS)''.

mailto:stamelos%7d@csd.auth.gr

2

models that define and measure software quality, usually by combining software
metrics and experts' opinions. The advent of free, libre and open source software
(OSS) has rendered the traditional quality evaluation models non applicable to
some extent, as they cannot be tuned to reflect OSS development practices and
therefore cannot be used to evaluate both the software and the community as a
whole.

In this paper, we present a novel software quality evaluation model, specifically
targeted to OSS. The SQO-OSS model was constructed to support an automated
software evaluation system; its variables are mainly metric-oriented while human
intervention is minimal. Additionally, our model evaluates all aspects of OSS de-
velopment, both the product (code) and the community. The evaluation weights
and criteria can be tuned by the evaluator, while a set of predefined profiles that
cover basic evaluation cases are offered.

The remainder of the paper is organized as follows: In Section 2, we present re-
lated work in the area of both traditional and open source software quality evalua-
tion; in Section 3, we present the SQO-OSS quality model definition and the eval-
uation process. Section 4 presents an application of a part of the model on three
example open source projects. The paper concludes with a description of the
Alitheia system, the host system for software metric calculations, as well as our
plans for future work.

2. Related work

Since researchers started investigating the issue of quality in software systems,
they employed specific models to express it. Models usually decompose quality
into an hierarchy of criteria and attributes4. These hierarchical models lead to met-
rics at their lowest level. Metrics are directly measurable attributes of software and
they are used to express certain aspects of the product that affect quality [1]. Ex-
amples of traditional software quality models are the McCall and Boehm's models
[1], the more widely accepted ISO/IEC 9126 model [2], and its more recent im-
plementation by SQuaRE, the ISO 25000:2005 [3].

The adoption of OSS in many organizations has raised the issue of OSS quality
evaluation. Due to the nature of OSS development where standard practices in-
clude open access to the source code, shared artifact repositories, peer review of
committed code, asynchronous global development and lack of formal support,
traditional software quality models may not be sufficient. An array of quality
models specifically targeted to OSS development can be found in the literature,
but most of them are either purpose specific or require significant human interven-
tion,.

The OSMM [4] model assumes that the quality of an open source project pro-
portional to its maturity. The latter is decomposed into six constituents (Product
software, Support, Documentation, Training, Product integrations and Profes-
sional services), each one having some weight. The evaluator assigns a score to
each element and the final evaluation mark is the weighted sum of the scores. Al-

4 Throughout the paper the terms criterion and attribute (sub-criterion and sub-attribute)

are used interchangeably.

3

though OSMM is simple and thus easy to apply, it is often criticized for not taking
into account some important software artifacts, such as the source code itself.

The Open Business Readiness Rating (OpenBRR) [5] defines a model and a
process for evaluating OSS, with particular emphasis on attributes interesting to
businesses. OpenBRR uses a variety of high-level criteria for evaluation, such as
functionality, operational software characteristics, support and service and adop-
tion and development process. The assessment process involves defining a refer-
ence application and through it identifying a set of characteristics (and weights for
them) that are desirable in the evaluated applications. The evaluation result is ex-
tracted by assigning grades to each characteristic and averaging the results from
the evaluators. While the OpenBRR method is a step forward from OSMM
through the inclusion of the community process in the evaluation, the notion of the
reference application has been criticized as a major drawback. Furthermore, the
evaluation itself is highly subjective, while the overall process seems complicated,
offering very little prospect for automation.

The Qualification and Selection of Open Source Software (QSOS) [6] is an-
other open source evaluation model. The evaluation process is done in four itera-
tive phases. Phase one is the definition of the evaluation factors. The second phase
involves the collection of information from the open source community and the
construction of an identity card for the evaluated software. The quality criteria are
then scored in a range from zero to two according to specific guidelines provided
by the methodology. Phase three is the definition of the selection criteria accord-
ing to user's needs and constraints. The last phase is the identification of the soft-
ware that fulfills user requirements and more generally compares software from
the same family. Like OpenBRR, QSOS offers a tool that supports the evaluation
process. Although QSOS scoring guidelines allow for objective results among
users, the whole process is not flexible enough and difficult to handle.

The SQO-OSS quality model distinguishes from existing open source quality
models in various ways:

1. The SQO-OSS model was constructed with a focus to automation, while the
rest of the models require heavy user interference and lack automation of met-
rics collection.

2. The SQO-OSS model is the core of a continuous quality monitoring system and
automatic metrics collection guarantee that assessments are made with rela-
tively recent data.

3. The SQO-OSS model does not evaluate functionality. Functionality assessment
requires the evaluator to play an important role in the assessment process and
thus introduces subjectivity. The SQO-OSS model focuses on fundamental as-
pects of OSS quality, namely OSS project maintainability, reliability and secu-
rity.

4. The SQO-OSS model focuses on source code. Source code is the single most
important product of a software development project and its quality must play a
significant role in determining the final assessment of the product.

5. The SQO-OSS model also considers the open source community. However, it
takes into account only those community factors that can be measured auto-
matically.

4

6. As the evaluation must necessarily take into account the evaluator's point of
view, we allow the user to intervene in the measurement-based evaluation
process by modifying category profiles.

3. The SQO-OSS quality model

We can generally assume that an evaluation process can be divided into two phas-
es, the definition of the evaluation model and the definition of the measurement
process. In our case, each phase includes two distinct steps:

Phase One: Definition of the evaluation model

1. Definition of the model criteria (attributes and sub-attributes).

2. Definition of metrics.

Phase Two: Definition of the aggregation method

1. Definition of the evaluation categories

2. Definition of the profiles of those categories

Phase one represents the work done in order to define the evaluation framework,
applying our notion of quality, the definition of the quality criteria and the metrics
that measure these criteria. The second phase represents the data collection part
and the aggregation of the measurement results in order to reach an outcome for
the quality of the artifact under evaluation. At this point we have to lay more em-
phasis on the fact that throughout this process, automation was the main concern.
We wanted a model that can be applied automatically and on a fair amount of pro-
jects, fed continuously with data from the SQO-OSS observatory. Thus we tried to
focus on quality attributes that can be measured with minimum human interfer-
ence. For example usability involves extensive human interaction so it was not
chosen as a quality attribute for our model. The same approach was followed for
metrics selection.

3.1 Model definition

Prior to starting the construction of our model, we took into account that the qual-
ity and the health of an OSS project depends on the quality of its source code base
and that of the community built around it. In order to measure these two aspects of
quality and construct the SQO-OSS quality model we used a simplified version of
the Goal-Question-Metric (GQM) process [7].

For the first part, we formulated our first goal, “analyze the source code of an
open source project''. This analysis has to be done in order to characterize code
quality with respect to its maintainability, reliability and security. So, for this goal
we formulated the question “How is source code quality measured?''. We then
formulated the question as “How is maintainability, reliability and security meas-
ured?'' In turn, each one of these aspects of source code quality is a small goal
itself with its own questions. We kept on formulating questions iteratively until we

5

reached a level where an attribute can be measured using straightforward metrics,
i.e. without any usage of compound metrics.

For example, in order to measure Maintainability, we chose to follow its defini-
tion in the ISO/IEC 9126 quality model: Analyzability, Changeability, Stability,
Testability. To measure each one of these sub-attributes we used direct source
code metrics. In order to differentiate between structured and object oriented pro-
gramming we used different definitions of Maintainability attribute for these two
programming paradigms. Metrics selection was a difficult part, since software
engineering metrics research is a very active topic and many researchers express
their concerns on various metrics. For our own model we chose to select only
widely acceptable metrics and metrics that have been validated extensively [8].
For an extensive review on metrics please refer to [9] and [1].

Fig. 1 The SQO-OSS quality model.

In a similar fashion, we constructed a hierarchical view of our quality model as
a tree. The root represents the overall quality model, the next two nodes the source
code and community quality, while the leaves represent the metrics. After con-
structing the initial model, we uploaded the model on the wiki page of our project
asking from our consortium partners to review it and comment on it. Our partners
come from the OSS community (developers, users), academia and companies spe-
cializing on OSS development and support. Additionally, we also asked them to
change the model (both model leaves and respective metrics) and justify their opi-
nion. The only thing stressed to the partners was the importance of automatic met-
ric collection. The history facility of the wiki allowed us to review the changes,
discuss them with the partners and finalize the model. A tree view of the model is
presented in Figure 1, while the metrics selected for the evaluation of the selected
criteria (the leaves on the tree view) can be seen in Table 1. At this point, we
should mention that our system allows partial evaluation of a product, i.e. evalua-
tion of a single attribute like Testability. Thus, we have used the same metrics in
more than one attribute.

6

Table 1. Metrics for criteria of Product (Code) Quality and Community Quality

Attribute Metric
Analyzability Cyclomatic Number
 Number of statements
 Comments frequency
 Average size of statements
 Weighted methods per class (WMC)
 Number of base classes
 Class comments frequency
Changeability Average size of statements
 Vocabulary frequency
 Number of unconditional jumps
 Number of nested levels
 Coupling between objects (CBO)
 Lack of cohesion (LCOM)
 Depth of inheritance tree (DIT)
Stability Number of unconditional jumps
 Number of entry nodes
 Number of exit nodes
 Directly called components
 Number of children (NOC)
 Coupling between objects (CBO)
 Depth of inheritance tree (DIT)
Testability Number of exits of conditional structs
 Cyclomatic number
 Number of nested levels
 Number of unconditional jumps
 Response for a class (RFC)
 Average cyclomatic complexity per method
 Number of children (NOC)
Maturity Number of open critical bugs in the last 6

months
 Number of open bugs in the last six months
Effectiveness Number of critical bugs fixed in the last 6

Months
 Number of bugs fixed in the last 6 months
Security Null dereferences
 Undefined values
Mailing list Number of unique subscribers
 Number of messages in user/support list per

month
 Number of messages in developers list per

month
 Average thread depth
Documentation Available documentation documents
 Update frequency

7

Attribute Metric
Developer base Rate of developer intake
 Rate of developer turnover
 Growth in active developers

3.2 Evaluation Process

In order to evaluate the quality of an open source project, we have to combine all
these measurements in one single view to obtain an evaluation result, i.e. we have
to aggregate the measurements. For this, we used the profile-based evaluation me-
thod described in detail in reference [10]. Most evaluation methods presented in
the literature use a weighted average sum function as their aggregation method. A
drawback for applying this aggregation method on our model is that it uses meas-
ures with interval scales, while our goal was to provide results in an ordinal scale
(such as good, fair or poor). The method we selected allows us to combine all
kind of measurements, based on either ordinal or interval scales.

In order to apply an ordinal scaling aggregation method, we must first decide
how many categories of evaluation ranking are required. In reference [10], Mori-
sio et al. discuss that the ideal number of evaluation categories is between three
and five. Based on that, for our model, we used four categories: Excellent (E),
Good (G), Fair (F) and Poor (P) (or as an ordinal scale E>G>F>P). Having four
categories, the aggregation method requires the definition of three profiles, each
one for the first three categories (E, G and F). If an artifact cannot be fitted into
one of these three categories, then it is automatically categorized as poor. The pro-
files represent the least measurement values required for each category and they
are defined separately for each composed criterion of the model. Then each crite-
rion is further decomposed into its sub-criteria (hierarchically, according to the
quality model) and each decomposed criterion has its own profile. For the quality
model leaves, which consist of an array metrics used to assess their parent crite-
rion, we use a vector of numbers that is constructed by the application of each
specific metric to the assessed artifact. We used the thresholds indicated by the
literature [11, 12, 13] to correlate the measurement value vectors to the profiles we
had developed (see Table 2).

Decomposing root attributes of our quality model into more fine-grained crite-
ria and then down to metrics entails that profiles correspond to each decomposed
criterion. Thus, in order to characterize the product quality of a product as “Excel-
lent”, Maintainability, Reliability and Security must be also characterized as “Ex-
cellent. Table 2 shows that a software component that scores “Excellent”' in Main-
tainability must score “Excellent” in the Analyzability sub-attribute, too. This, in
turn, means that the corresponding metrics applied to the evaluated component
must return values equivalent to or higher than the vector [4,10,0.5,2]. Similar
profiles correlating metric values to profiles can be applied to the rest of the crite-
ria. Due to space limitations, Table 2 shows only the metrics values for Analyz-
ability and Changeability; however, similar thresholds exist for the rest of criteria.
Users of the model can modify the profiles according to their needs, e.g. a security
aware user may define higher default values for each of the profiles. Additionally,

8

the method allows usage of weights on the various metrics, but such practice is not
recommended, as we assume that all metrics are of equal importance.
The aggregation process is done with the use of specific outranking relations itera-
tively with all the given profiles. The outranking relations express our decision of
comparing the artifact with the profiles. Thus, an artifact x is considered to be at
least as good as the y profile if and only if the “weighted” majority of the criteria
agree so. If a set of tests agree, which represent the strength to be reached in order
for an artifact to be categorized in a category A then x is assigned to A. The me-
thod also allows for two kinds of assignments in categories. The first is the pessi-
mistic assignment representing the at least as good as relation (project x is at least
as good as profile y). The second is the optimistic assignment, which identifies the
profile which is surely worse than x and assigns x to the previous one (for example
if x is strictly worse than E then it is assigned to G). If the two assignments coin-
cide, then we are sure about our decision, otherwise it is the evaluator's decision
which of the two assignments will be adopted. The mathematical foundations and
the actual procedure of the aggregation process is presented in reference [10]. The
method used here is different than Analytic Hierarchy Process, a widely used ag-
gregation method, which requires ratio scales on all measures, a requirement that
is not fulfilled in our case. Moreover, as already mentioned earlier, having a
weighted average sum function as an aggregation method forces us to use meas-
ures with interval scales; our goal was to provide results on an ordinal scale, a
feature that is provided with the method presented.

An example of the aggregation process is presented in the next section.

Table 2. Profiles for criteria Analyzability, Changeability, Stability and Testability

Composed
Criterion

Criterion Profile E Profile G Profile F Scale

Analyzability Cyclomatic number 4 6 8 Less is better
 Number of statements 10 25 50 Less is better
 Comments frequency 0.5 0.3 0.1 More is better
 Average size of statements 2 3 4 Less is better
Change-
ability

Average size of statements 2 3 4 Less is better

 Vocabulary frequency 4 7 10 Less is better
 Number of unconditional

jumps
0 0 1 Less is better

 Number of nested levels 1 3 5 Less is better
Stability Number of uncond. jumps 0 0 1 Less is better
 Number of entry nodes 1 2 3 Less is better
 Number of exit nodes 1 1 1 One is better
 Directly called components 2 5 7 Less is better
Testability Number of exits of condi-

tional structs
0 1 4 Less is better

 Cyclomatic Number 4 6 8 Less is better
 Number of nested levels 1 3 5 Less is better
 Number of uncond. jumps 0 0 1 Less is better

9

4. Evaluation Example

In this section, we present an example of application of the SQO-OSS quality
model. For our example, we evaluated the source code of the CVS versioning sys-
tem, the interpreter of the Perl programming language and the C files of the
FreeBSD operating system. Table 5 shows the performance of these projects ac-
cording to the various measurements. All measurements were performed using the
metrics extracted from the application of the CScout refactoring browser [14] on
the evaluated projects. According to the measurements, two out of our three pro-
jects scored well in the maintainability criterion. A direct interpretation of these
results according to the proposed model is that CVS and FreeBSD are at least as
good as the metrics thresholds for the Good profile, while Perl is at least as good
as the thresholds for Fair.

A careful examination of the results reveals details of the performance of these
projects in various sub-attributes of maintainability. All three projects achieve
high marks in the changeability metrics and a good level of analyzability, perhaps
due to their development model. Stability and testability are fair, but close to the
metric thresholds we set for each respective criterion. Taking into consideration
that the thresholds used in our example are relatively strict, the results are encour-
aging even for these two factors. Apart from providing predefined thresholds, our
method has the benefit of presenting the results in a way that enables the devel-
oper to focus on measurements that are really interesting to him and also to re-
ceive both coarse and fine grained information.

Table 5. Example measurements of projects CVS, Perl and FreeBSD

Project evaluation Composed
Criterion CVS Perl FreeBSD
Analyzability [5.63, 37.8, 0.34, 1.89] [3.0, 36.17, 0.08,

1.02]
[3.82, 29.99, 0.12, 1.99]

Evaluation Good Fair Excellent
Changeability [1.89, 2.91, 0.24, 1.13] [1.02, 2.42, 0.28,

0.53]
[1.99, 2.87, 0.51, 0.86]

Evaluation Good Excellent Excellent
Stability [0.24, 3.28, 1.08, 4.49] [0.08, 3.21, 0.78,

4.75]
[0.25, 3.99, 1.23, 4.10]

Evaluation Poor Fair Poor
Testability [0.57, 5.62, 1.13, 0.24] [0.46, 3.0, 0.53, 0.08] [0.55, 3.82, 0.86, 0.25]
Evaluation Good Good Good
Maintainability Good Fair Good

5. The Alitheia system

The quality model presented above serves as an automated decision support tool,
integrated into the SQO-OSS system [15]. The SQO-OSS project aims to build a
software quality observatory for OSS. For that purpose, we have developed
Alitheia, a quality evaluation tool, and a web site with the results of the tool appli-

10

cation on various OSS projects. The user is able to browse the product and process
quality characteristics of the evaluated projects. The SQO-OSS quality model as-
sists the user by incorporating the individual measurements in a comprehensive set
of predefined quality profiles.

The Alitheia platform is an OSGi-based tool, targeted to the evaluation of
software quality. It consists of a set of core services, such as accessors to project
artifacts, job managers and relational data storage, and it is extensible through the
use of plug-ins. Plug-ins can either implement basic software metrics or combine
the results from other plug-ins arbitrarily. In fact, the quality model is a compound
plug-in in Alitheia. The system allows full automation of the quality evaluation
process after the initial project registration. The core communicates to the world
through a web services interface. Clients being developed include the aforemen-
tioned web site and an Eclipse plug-in.

6. Conclusion and future work

In this paper we presented a new open source software quality evaluation model.
The model was constructed for use in the Alitheia system, as a measurement-
based decision support system, therefore automation was one of the first priorities
while constructing the model. Previous models developed for OSS evaluation re-
quire a substantial effort from the user regarding the rating of the software under
evaluation, while the model presented here asks for limited user interaction. Apart
from the model itself, the evaluation process facilitates a profile based evaluation
algorithm that is different from the traditional weighted aggregation that most of
the models use. The profiles used for evaluation can be altered by the evaluator if
he decides it is needed so.

Our immediate plans are to empirically validate our model. In order to
test our model we are collecting measurements from an array of OSS projects. To
meet our goal, we are going to perform a user based validation. Our project con-
sortium includes members of a large OSS project, namely KDE Desktop Envi-
ronment. Partners from the KDE project will evaluate software against our model
and their opinions will be tested against the results or our evaluation process. In
addition we want to evaluate its predictability and accuracy regarding its ability to
classify software according to its quality. These tests will also allow us to calibrate
the threshold values of our profiles. Moreover, we will work towards testing the
relationships between metrics and categories and try to identify trends between
aspects of quality and metrics.

References

1. Norman Fenton and Shari Lawrence Pfleeger. Software Metrics - A Rigorous Approach.
International Thomson Publishing, London, 1997.

2. ISO. Software engineering - Product quality - Part 1: Quality model, ISO/IEC 9126-1:2001.
ISO Geneva, 2001.

3. ISO. Software engineering Software product Quality Requirements and Evaluation
(SQuaRE) Guide to SQuaRE. ISO Geneva, 2005.

11

4. Bernard Golden. Making Open Source Ready for the Enterprise, The Open Source Maturity
Model. Extracted From Succeeding with Open Source, Addison-Wesley Publishing Com-
pany, 2005.

5. Business Readiness Rating. Business readiness rating for open source.
http://www.openbrr.org.

6. QSOS. Method for qualification and selection of open source software (qsos) version 1.6.
http://www.qsos.org.

7. R. Van Solingen. The goal/question/metric approach. Encyclopedia of Software Engineer-
ing, 2:578-583, 2002.

8. Tibor Gyimothy, Rudolf Ferenc, and Istvan Siket. Empirical validation of object-oriented
metrics on open source software for fault prediction. IEEE Transactions on Software Engi-
neering, 31(10):897-910, 2005.

9. Stephen H. Kan. Metrics and Models in Software Quality Engineering, 2nd Edition. Addi-
son-Wesley Publishing Company, 2003.

10. Maurizio Morisio, Ioannis Stamelos, and Alexis Tsoukias. Software product and process
assessment through profile-based evaluation. International Journal of Software Engi-
neering and Knowledge Engineering, 13(5):495-512, 2003.

11. NASA and SATC. Recommended thresholds for non-oo languages.
http://satc.gsfc.nasa.gov/metrics/codemetrics/non_oo/thresholds/index.html.

12. NASA and SATC. Recommended thresholds for oo languages.
http://satc.gsfc.nasa.gov/metrics/codemetrics/oo/thresholds/index.html.

13. Saida Benlarbi, Khaled El Emam, Nishith Goel, and Shesh Rai. Thresholds for object-
oriented measures. In Proceedings of the 11th International Symposium on Software Reli-
ability Engineering (ISSRE). IEEE Computer Society, 2000.

14. Diomidis Spinellis. Global analysis and transformations in preprocessed languages. IEEE
Transactions on Software Engineering, 29(11):1019-1030, November 2003.

15. Georgios Gousios, Vassilios Karakoidas, Konstantinos Stroggylos, Panagiotis Louridas,
Vasileios Vlachos, and Diomidis Spinellis. Software quality assesment of open source
software. In Proceedings of the 11th Panhellenic Conference on Informatics, May 2007.

http://www.openbrr.org/
http://www.qsos.org/
http://satc.gsfc.nasa.gov/metrics/codemetrics/non_oo/thresholds/index.html
http://satc.gsfc.nasa.gov/metrics/codemetrics/oo/thresholds/index.html

