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Abstract

Java is a strong player in the application server market and thus the performance of its
virtual machine is an important aspect of a server’s performance. One of the components that
affect the performance of a JVM is the memory manager, which also includes the garbage col-
lector. Modern virtual machines offer a multitude of options for tuning the memory manager,
which can have a significant impact on server application performance.

In this paper, we examine the effect of tuning the garbage collection in an application server
environment. By employing both synthetic and real world application benchmarks, we assess
the various garbage collection strategies offered by two popular virtual machines. Finally, we
present a comprehensive list of generally applicable garbage collection guidelines.

1 Introduction
Java, and the J2EE platform, has made it to the datacentre. Being a widely deployed platform,
it has also attracted the interest of researchers doing work on runtime optimisation and virtual
machines.

An important component of the Java virtual machine (JVM) is its memory manager. Fol-
lowing the secure by default paradigm of the platform, Java does not allow explicit memory al-
location and deallocation. Instead, the programmer relies upon the garbage collector to handle
the menial tasks of memory management. Automatic memory management is not a novelty of
the Java platform though; it existed from the first implementations of the Lisp language. How-
ever, it has since been criticised for its performance [14, 21], especially compared to explicit
memory management [11, 22, 7, 15].

Modern virtual machines offer a choice of garbage collectors that are specifically targeted
to certain types of workloads and allow for fine-tuning garbage collection parameters to match
the exact requirements of a specific application. They also offer methods for measuring the
effect of garbage collection on program execution. However, the complexity of both the of-
fered options and that of the inner workings of garbage collection makes the process of tuning
memory management a difficult task. The purpose of this work is to evaluate if and how the
tuning of garbage collection can affect the performance of a J2EE on the two most popular
virtual machines.
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2 Memory Management for Java

2.1 Garbage Collection Basics
A garbage collected system consists of two basic entities: the mutator which performs the
computation and thus affects the heap and the collector which performs the actual collection.
Garbage collection systems are divided into two major categories depending on whether the
mutator is allowed to work in parallel with the collector or not:

Stop-the-World: All mutator threads are required to reach a safe point and yield control be-
fore the collector starts.

Concurrent: The collector threads run in parallel with the mutator threads. In order to keep
track of the heap state, concurrent collectors, depending on the implementation, require
to be notified when a read or write occurs to a specific object in order to update their state
(read/write barrier).

Stop-the-World (StW) collectors tend to be the strategy of choice for most generic work-
loads where high throughput is required, because the processing power they require is only
proportionate to the heap size. However, StW collectors pause the mutator when they operate
and pause times are also proportionate to the heap size, thus making them unsuitable for in-
teractive or real-time systems featuring large heaps. On the other hand, incremental collectors
tend to require more CPU resources as a result of the barrier-oriented operation but are able
to offer, or even guarantee in some implementations, bounded pause times, thus making them
suitable for interactive or real time workloads.

Collection Strategies

Memory in most programming systems is allocated in terms of variable-sized cells. Pointers
and references are essentially links from one memory cell to another. Most garbage collec-
tion algorithms process memory cells recursively. The processing starts from a known area of
memory, usually refereed to as root set and, following the links in memory, traverses all active
memory areas. The root set usually consists of pointers in the processor registers, static mem-
ory sets and pointers on the execution stack and is generated dynamically before the garbage
collector starts its operation.

The following strategies are used by the majority of garbage collected systems. We are
only presenting the basic idea behind each strategy, since explaining the actual workings and
available variations would require the printing space of a book. For further reference, Jones’
classic text [17] is a very good source of detailed information.

Mark-sweep The garbage collector first scans the accessible memory locations and marks
them as such and then either returns the inaccessible memory addresses to the allocator
(sweeping) or moves the accessible memory locations to consecutive memory addresses
to avoid fragmentation (compaction).

Copying Divides the memory into two areas, the so-called “From” and “To” spaces. Alloca-
tions only occur in the From semispace, using a cheap bump pointer allocator. During
garbage collection, the accessible memory cells are copied from the From semispace
to the To semispace recursively, starting from the roots. After garbage collection, the
semispaces exchange roles.

Generational According to the generational hypothesis [21], most objects die young and con-
sequently older objects tend to live longer. Generational collection capitalises on the
generational hypothesis by dividing the available memory space into multiple regions
called generations. Garbage collector passes are less frequent as the generations grow
older and objects are always allocated into the newest generation. If the object survives



a garbage collection, it is promoted to an older generation. Each generation can have a
separate garbage collection strategy.

Reference counting Reference counting uses a counter per object to record the number of
references to the object. The pointer is incremented each time a reference towards the
object is created. The object is reclaimed when its reference count drops to zero. Refer-
ence counting is being extensively used by scripting languages such as Perl.

Copying garbage collection is unsuitable for general use because it requires twice the mem-
ory space than Mark-Sweep algorithms to work efficiently. However, it is used as the collection
strategy of choice in the young generation semispace of generational collectors both because
the allocation mechanism it offers is cheap and also because it compacts the heap while collect-
ing garbage. Mark-Sweep garbage collection is most times followed by a compaction phase in
order to avoid memory fragmentation. The compaction phase requires moving the objects to
adjacent memory locations, thus making Mark-Sweep quite an expensive algorithm for large
memory multiprocessor environments, unless a multithreaded heap compactor is employed.
Simple reference counting is also unsuitable for high throughput environments because it re-
quires objects to be reclaimed on pointer updates; if a pointer is removed and the reference
count of the pointed object drops to zero, the runtime system is required to collect both that
object and the objects it references. Furthermore, a major drawback of reference counting is its
inability to collect circular data structures, such as doubly linked lists. Despite its drawbacks,
the simplicity in the implementation of reference counting made it the preferred garbage col-
lection strategy in runtime environments with a limited lifetime, such as scripting languages.

2.2 Interaction with the Java Runtime Environment
Memory in a typical JVM is organised in a series of mutable (garbage collected) and immutable
zones. Class code is usually loaded in immutable space1 and remains there until the JVM is
stopped. Also, the code emitted from the JIT compiler is temporarily stored in immutable
space. The actual allocations take place in the heap, which is a contiguous memory area. The
size of the heap is a very important performance factor for all JVMs because it affects the
frequency and extent of garbage collections. Most JVMs use expandable heaps, starting with a
minimal default size. Modern virtual machines also assign distinct parts of the heap to separate
threads for allocations that occur within the thread operation in order to avoid contention from
extensive heap locks in multithreaded environments.

The minimum allocation unit in Java is an object. Objects are created by instantiating
classes and are allocated on the heap using a memory allocation policy, usually bump pointer
allocation or segregated lists. Apart from the class member values, each object also contains
additional data such as a pointer to the respective class methods and flags related to locking and
garbage collection. In most virtual machines, object headers take up to 8–12 bytes of additional
storage space for each object, and can therefore sadle a program with significant performance
and space overhead. A lot of work has been put into compacting the object header [6], which,
in some cases, resulted in space savings of up to 20%.

A failure to allocate space for an object triggers a garbage collection cycle. The root set
is determined by conservatively scanning the stacks of running or suspended threads and the
current values of the processor registers for potential pointers to the heap. Root set acquisition
can also be a performance bottleneck in the case when a large number of threads is executed
concurrently, though these costs can be amortised using clever co-operation of the garbage
collector with the JIT.

1Recent JVMs offer options to unload unused classes during garbage collection cycles in order to conserve memory.
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Figure 1: Heap organisation in the Sun JVM

3 Java Virtual Machines and Memory Management

Sun JVM 1.5

Sun’s JVM is an implementation of the 1.5 version of the Java language specification. It features
an adaptive optimising JIT compiler, the well-known Hotspot engine, and a choice of three
garbage collectors [2, 12]. Sun’s JVM is based upon a generational copying garbage collector
that utilises two generations. Figure 1 presents the heap organisation, which is shared among
all collectors. Allocations initially occur in the eden space and survivors are promoted to one
of the survivor spaces in a copying fashion. Optionally, portions of the heap space can be
allocated to individual threads (Thread-Local Heaps (TLHs)), in order to speed up allocations
on large-heap multithreaded environments. Objects that reach a certain age threshold, usually
measured in minor garbage collection cycles, are copied to the tenured generation where they
are left untouched until a major collection occurs. A mark-compact garbage collector is used
for the tenured generation.

The default garbage collector in the Sun JVM is a single-threaded stop-the-world collector,
which tries to be a low-overhead all-around solution. In order to address more specialised
workloads, Sun has implemented two more collectors:

Throughput Collector This is a multithreaded version of the young generation collector in
order to speed up minor collections on large memory multiprocessor machines. Newer
versions of the JVM also support multithreaded collections in the tenured generation.

Concurrent Collector This is a collector thread that is executed in parallel with the mutator
threads. It only collects garbage in the tenured generation in order to achieve guaranteed
pause times in major collections. It also features an incremental mode that periodically
stops the collection process to relinquish processor resources to mutator threads.

IBM JVM 1.5.0

IBM’s JVM 1.5.0 offers a choice of two heap organisations; The default garbage collector in
the IBM JVM is based on the Mark-Sweep algorithm extended with compacting capabilities
and thread-local heaps [10, 4, 1, 16]. The IBM garbage collector is highly parallelised; all
three phases of the garbage collection process can run in parallel threads on multi-processor
machines in order to minimise pauses and maximise throughput. Additionally, the marking and
sweeping phases can also operate concurrently with the application threads. To avoid excessive
heap locking during allocations, each application thread is granted a configurable amount of



the heap space for small object allocations. A dynamically-sized special area in the heap is
devoted solely to satisfy requests for large object allocations so as to prevent allocation failures
due to memory fragmentation. Apart from the single heap mode, the IBM JVM can also operate
in generational mode, much like the Sun JVM. In the IBM case however, the tenured generation
is collected using exclusively a concurrent algorithm.

4 The Benchmarks
Virtual machine benchmarking is a complicated process since a lot of components, such as
the adaptive JIT compiler and the garbage collector, can affect performance in a manner that
is difficult to disentangle. In our experiments, we tried to minimise the effect of virtual ma-
chine components by forcing them into a mode that does not introduce unpredictability to our
benchmarks, for example by performing several warm-up rounds to allow time to the JIT to
optimise the hot code paths. We assessed various garbage collection configurations in both
virtual machines using two sets of benchmarks:

Synthetic Benchmarking We used the DaCapo memory management benchmark suite [19]
in order to perform a comparative evaluation of various configurations of the tested vir-
tual machines and decide for the best combinations to use in the real world benchmarks.
The DaCapo benchmark consists of a series of memory intensive applications, such as
the hsqldb database and the xalan XSLT processor, that are bundled together with stan-
dardised datasets. The DaCapo benchmark is throughput oriented and its workload is
composed of real world applications; it is therefore suitable for pre-evaluation of garbage
collection options in throughput sensitive environments, such as application servers.

Real World Application Benchmarks We employed the commonly referred RUBiS applica-
tion server benchmark [3, 9]. RUBiS consists of a J2EE-based application that models an
on-line auction web site and a distributed load generator. The server part of the bench-
mark has been implemented using various configurations of the J2EE stack, for example
using a pure Servlet-JDBC environment or using Enterprise JavaBeans (EJBs) for data
access. In order to model the most common application server usage scenarios, we chose
the EJB Session facade configuration. The application was run on the JonAS appli-
cation server with MySQL as the backend database. Both JonAS and MySQL were run on
the same physical machine. We did not perform any performance-specific customisation
of either JonAS or MySQL, apart from the minimal configuration that was required to run
the RUBiS application.

We used two sources for benchmark data collection; the original output from each bench-
mark suite and a custom-made application that exploits the Java Management Extensions
(JMX) [18] capabilities of virtual machines that conform to the 1.5 specification of the Java
language. The JMX client application opens a persistent connection to the JVM that hosts the
application server before the benchmark is started. A minimal overhead is imposed on the
virtual machine by the JMX client, but the overhead is equally affecting both tested virtual ma-
chines since they share the same JMX implementation. The JMX client monitors the following
runtime properties:

• Total and actually used heap size

• Number of garbage collections

• Total time devoted to garbage collection



Bench. Sun JVM IBM JVM
1 -server —
2 -server -Xms256M

-Xmx4000M
-Xms256M -Xmx4000M

3 -XX:+UseParallelGC -Xgcpolicy:optthruput
4 -XX:+UseParallelOldGC —
5 -XX:+UseParallelOldGC

-XX:+UseTLE
-Xgcpolicy:optthruput
-Xnocompactgc

6 -XX:+UseConcMarkSweepGC -Xgcpolicy:optavgpause
7 -XX:+UseConcMarkSweepGC

-XX:+CMSIncrementalMode
—

8 -XX:+UseConcMarkSweepGC
-XX:+CMSIncrementalMode
-XX:+CMSIncrementalPacing

-Xgcpolicy:gencon

Table 1: Default configurations for the synthetic benchmark

4.1 Benchmarking Configurations and Rationale
The synthetic benchmark suite is primarily used as a quick means of assessing the effect of the
various options that are offered for fine tuning the garbage collectors for both virtual machines.
At first, we used the default configuration in both cases in order to obtain a reference point
(1). We then increased the minimum and maximum heap sizes to resemble more closely the
actual running conditions on server-class hardware in terms of available memory space (2)
and keep it constant in all benchmarking rounds. Since both virtual machines offer parallel and
concurrent versions of their collectors, we enabled them in turn while maintaining the invariant
of exercising only one type of collector per benchmark round.

We first enabled the throughput collector for the young generation (3) and then exercised
the throughput collector for both the new and the old generations (4). The theoretical maximum
throughput, as proposed by [13], should be achieved using the full throughput collector coupled
with thread-local heaps(5). Then, we tested the concurrent collector in the default (6) and
incremental modes (7) and finally in incremental mode with auto-tuning of increments (8),
in order to assess the overhead the incremental collection incurs to the application. The IBM
virtual machine is better on self-configuring the garbage collector optimally for the hardware it
runs on; for example it automatically enables parallel collection on multiprocessor machines.
Therefore, only the three default garbage collection strategies were exercised in the context
of the synthetic benchmark. The maximum throughput is theoretically delivered by disabling
the compaction phase while using the parallel collector. Table 4.1 summarises the command
line options used in the synthetic benchmark. We try to present similar policies in both virtual
machines side-by-side.

The RUBiS benchmarking process is based on the findings of the DaCapo benchmark. We
run the RUBiS test application three times on each virtual machine using different configura-
tions for the garbage collectors. The RUBiS load generator was configured identically across
all benchmarking rounds. Specifically, we used the default state transition map to feed the
generator and we configured it to simulate 500 concurrent clients, with a mean think time of
seven seconds. In order to allow the application server to gracefully scale its resources to a
state where it will be able to handle the benchmark workload, we used a ramp-up period of five
minutes.



Application Version
Linux Kernel 2.6.11.4-21.10-smp
Sun JDK 1.5.0 03-b07
IBM JDK IBM J9 VM (j9vmxa6423-20051103)
JoNAS 4.7.1
MySQL 4.1.10a
RUBiS 1.4.3

Table 2: Versions of the tested platforms

4.2 Test Environment Setup
Our test setup consisted of a high performance server platform running Suse Linux 9.3 (64-
bit) connected to a 1Gbps switched network of clients. No client was actively used during the
benchmarking period apart from the load generator. The server hardware utilised twin AMD
Opteron 2.2GHz processors, 8GB of memory and a RAID-1 array of 15k RPM SCSI hard disks.
All the applications we used were compiled for a 64-bit environment and were the default
versions installed by Suse. No kernel customisations were performed on the server. Table 2
presents the application versions we used for running the benchmarks.

The load generator machine featured dual Xeon 2.8GHz processors (Hyper-Threading was
enabled) configured with 2GB of main memory. The operating system is RedHat Enterprise
Linux 3 with kernel 2.4.20. The load generator machine was also used to run the JMX moni-
toring application.

5 Results

5.1 The DaCapo Benchmark
The DaCapo benchmark uses memory intensive applications to generate a workload that ex-
ercises the virtual machine’s garbage collector. On modern hardware, the DaCapo benchmark
executes too fast to allow for safe conclusions to be drawn. This fact makes it particularly
restrictive to allow for a comparative evaluation of the tested virtual machines. However, when
all parameters except the garbage collection algorithm are maintained, the choice of the algo-
rithm can by itself affect the results in a foreseeable manner. Having considered the above, the
DaCapo benchmark results can be a valuable tool for a quick evaluation of the garbage collec-
tor implementations for a single virtual machine. The results from the Dacapo benchmark are
presented in Figure 2.

In the case of the Sun JVM, the default configuration seems to perform well enough in most
tests. It actually managed to outperform all other implementations in four out of eight tests.
This happened because all the DaCapo benchmarks are specifically chosen to impose a heavy
load on the object allocator. The pure generational nature of the default garbage collector
allows it to provide fast allocation performance based on the copying nursery while on the
other hand, the benchmark duration did not allow many objects to mature enough to be copied
to the tenured space. The throughput-oriented parallel collectors did not provide any additional
performance benefit except from the benchmarks with extremely high allocation rates.2 The
concurrent collector worked better in incremental mode, probably due to the fact that it allowed
for more CPU power to be allocated to processing threads.

The IBM garbage collector benefits more from manual tuning. In most benchmarks, the
hand-tuned heap size configuration was faster than the default configuration while the through-

2The hsqldb allocation rate climbed to 270 MB/sec while the batik allocation rate was only 11 MB/sec
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Figure 2: Dacapo benchmark results

put collection policy offered a performance benefit in most applications. However, turning off
heap compaction did not offer any significant performance advantages, especially for bench-
marks with high allocation rates. On the other hand, the average pause collection strategy
did not impact performance significantly, being faster in most cases than the default collection
strategy. Finally, the generational heap organisation offered better performance, throughput-
wise, than the incremental collector, even though the average pause time was not of interest for
the purposes of our work and therefore was not exercised.

The DaCapo benchmark revealed three interesting properties that are common across both
virtual machines:

• Applications featuring high memory allocation rates can benefit from multithreaded col-
lection.

• Generational heaps (default for Sun, optional for IBM) can offer good performance for
applications with a short lifetime.

• Incremental collection is not practical in high throughput environments.

5.2 The RUBiS Benchmark
The goal of the RUBiS benchmark was to enable us to understand the effect of garbage collec-
tion tuning on real application performance. We followed a step-by-step approach maintaining
the invariant of turning only one knob at any time.

The first experiment we run measured the memory allocation rate while the benchmark was
running under full load. The RUBiS server application was exposed to a client load ranging
from 100 to 500 concurrent clients. We employed the Sun JVM verbose garbage collector
option (-Xloggc) to collect a trace of the performed collections. We then used the excellent
HPJTune utility to process the trace and calculate the average memory allocation. We only
measured the allocation rate during the actual benchmarking state; during the ramp-up period,
the allocation rate was, as expected, much higher. The results are presented in Figure 3.

The memory allocation rate was a good starting point for tuning the garbage collector.
Considering the outcome from the DaCapo application, a high allocation rate would indicate
the use of a parallel collector. Interestingly enough, the object pooling facilities that JonAS
is using alleviates some of the memory management pressure at the expense of high memory
usage which is a reasonable choice for server environments. However, using object pooling
can have a negative impact on non-generational collectors; the extend of the heap scans will be
proportional to the number of pooled objects. Therefore, the IBM JVM is expected, by default,
to spend more time than the Sun equivalent on garbage collections given the same heap size.
On the other hand, a concurrent collector could allow both virtual machines to offer competitive
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Figure 3: Memory allocation rate for the RUBiS benchmark

performance, since the raw allocation rate is not too high for a concurrent thread to cope with,
especially considering the hardware we used.

We selected the configurations to benchmark by combining the DaCapo benchmark find-
ings and the assumptions presented above. We tested a high throughput configuration, a con-
current configuration and, as a reference, the default configuration for each virtual machine.
We measured the number of successful transactions per second, the average time to satisfy
a request, the percentage of failed requests and the total time spent on garbage collecting the
heap. For the analysis, we only considered the results of the stable run of the benchmark, which
are presented into Table 3. In Figure 4, we present the data collected using the JMX monitoring
application for all benchmarking rounds.

When considering absolute performance, the default configuration of the Sun JVM per-
formed best. Not only did it offer the highest throughput, but also the lowest mean response
time and the lowest error rate from all configurations we tested. The heap occupancy graphs
are characteristic of a generational collector; most collections occur in the eden and thus the
collection time is very fast. The full heap collections, though, can cause unpredictable pauses;
the longest pause we measured was as high as 12 seconds. On the other hand, the parallel col-
lector behaved erratically; instead of decreasing total collection time, it increased it by 95%.
Also, it failed to decrease the average pause time while the worst pause time was more that 32
seconds. The incremental collector presented a predictive low-pause behaviour, but it did not
manage to maintain it throughout the test. Since this collector only operates as an aid to re-
duce collection time in major collections, this behaviour was expected as the memory pressure
increased and, possibly, heap compaction became necessary.

The data collected when running the benchmark using the IBM JVM were closer to what we
expected. The default and the throughput configurations worked almost identically, since the
JVM defaults to using the parallel collector on multiprocessor machines. However, for reasons

Configuration Sun JVM IBM JVM

TPS Avg. Resp.
Time (msec)

Err.
Rate

Total GC

Time (sec)
TPS Avg. Resp.

Time (msec)
Err.
Rate

Total GC

Time (sec)
default 72 934 0,013% 573 31 10097 0,028% 292
throughput 60 2196 0,0033% 1068 43 5582 0,014% 379
concurrent 26 12451 0,027% 1166 31 9859 0,021% 406

Table 3: RUBiS benchmark results. For each JVM and each configuration, the throughput in trans-
actions per second, the mean time to satisfy a request and the percentage of errors are presented.
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Figure 4: Heap occupancy during the RUBiS benchmark. The top row presents the default config-
urations, the second the incremental configurations and the last row parallel collection configura-
tions. The IBM JVM and the Sun JVM results are presented on the right and at the left respectively.



that have to do with the internal workings of the JVM, the throughput version manages to out-
perform the default version by 38% in the raw transactions per second metric, while providing
a faster mean response time and a lower error rate and also reducing the total collection time
by 25%. The IBM default/parallel collection seems a very efficient implementation; the pause
time is never more than 8 seconds while collecting more than one gigabyte of garbage in every
pass. Moreover, in order to keep the pause times low, the heap never expands to more than it is
absolutely necessary, thus decreasing the memory pressure on the host operating system. The
incremental collector also delivers its promised results, by keeping the pause time very low
(less than 2 seconds in all cases) at the expense of reduced throughput. Being a generational
collector, it tends to consume much more memory than the default collector, although this may
attributed to the fact that some objects can become garbage after the incremental collector has
scanned them (usually refereed to as floating garbage).

6 Garbage Collector Tuning Guidelines
In this section, we present the conclusions drawn from our experiments in the form of a com-
prehensive checklist. Administrators seeking to improve the performance of their J2EE servers
could find useful information in it.

• Understand the purpose and the inner workings of the garbage collectors offered by the
virtual machine you are using. You cannot tune something you do not understand and in
order to tune a garbage collection you cannot use a simple trial-and-error approach. Both
vendors offer excellent tutorials [4, 2, 13] and white papers [1, 16] to help you start with.

• Always use the application for whose the performance you are interested in for the pur-
pose of tuning the garbage collector. As it might have become obvious from the bench-
marks presented, not all tuning recipes apply equally to all applications. A successful
tuning effort is the combination of the garbage collection algorithm, the heap size and
the heap segment sizes that minimises the overall time spent in memory management for
the most common application usage scenario.

• Start your tuning effort by using a synthetic benchmark to get hints on the performance
of the garbage collection options offered by the virtual machine you are using on your
specific software and hardware platform. Be very careful as a synthetic benchmark does
not always reveal the true behaviour of a garbage collector, let alone that of a whole
virtual machine. You must be very well acquainted with the workload characteristics of
a synthetic benchmark before employing it.

• Unless you have specific hardware constraints, devote as much memory as you can to the
virtual machine. A big heap size offers the opportunity for less frequent, albeit more time
consuming, full heap collections. In a throughput-oriented environment sacrificing pause
times to allow more CPU time for the executed application is often a good compromise.
Do not allow the virtual machine to be swapped out to disk, as this is catastrophic for
performance. In an application server that only runs a single virtual machine, you could
devote about 90% of its available RAM to it and turn off paging, without risking the
failure of either the virtual machine or the operating system.

• Calculate the memory allocation rate for your application. It is a significant measurement
that you should perform by exposing the application to full workload. Its impact varies
depending on the underlying hardware. As a rule of thumb, on a multiprocessor machine,
each processor could easily generate more than 150MB of garbage per second. High
allocation rates can be efficiently dealt with by using parallel collectors or large eden
heap sizes.

• Calculate the distribution of the object sizes for your application. Using this information,
you could decide whether to enable certain garbage collector features. For example, if



Observation Problem Action
Many spikes in total
collection times

Too much time spent in full
heap collections or memory
compaction

Use a parallel collector, turn
off heap compaction (danger-
ous)

Too frequent full heap
collections

Heap size is small Increase heap size or use an
incremental collector to avoid
large pauses

Too many garbage
collected in each
collection round

High allocation rate or too fre-
quent full heap collections

Increase heap size, use paral-
lel collector, use thread local
heaps

Large differences be-
tween committed and
used heap

Heap size is too big Decrease heap size, allow
more space for young gener-
ations

Committed heap size
is constantly increas-
ing

Application is caching too
many objects

Decrease object pool sizes,
tune the application server to
close open connections faster,
use large object spaces

Table 4: Diagnosing performance problems from the diagrams

your application allocates many small objects, enabling support for thread local heaps
would be a sensible option. If your application uses object pooling, thus acquiring large,
long-lived objects, a large object space can help towards avoiding heap fragmentation.
Unfortunately, there is no easy means to calculate the object size distribution. You could
get an estimate by using garbage collection tracing or by carefully examining the hot
code paths in your application, which can be obtained using a profiling tool.

• Visualise the heap while your application is being benchmarked. It can help you to
identify performance bottlenecks, especially those concerning heap size or fragmentation
problems. The approach we present is very easy to implement while providing helpful
hints for performance problems, especially when combined with prior knowledge on the
exact garbage collection algorithm. Some performance problems that can be diagnosed
using our heap visualisation method are presented in Table 4.

• Collect traces using the verbose garbage collection option of your virtual machine. Use
vendor specific utilities for analysing those traces. They provide an easy way for ac-
quiring important information, such as the memory allocation rate and the mean object
size. For the Sun JVM use the aforementioned HPJTune utility; for the IBM JVM useful
tools include the heapdump and heaproots utilities and the IBM Pattern Modelling and
Analysis Tool for the Java Garbage Collector.

• If everything else fails, consider tuning the heap segment sizes. Contrary to vendor pro-
vided documentation, we do not believe that heap segment sizing is a viable configuration
option for most users, since the used garbage collection algorithms are not thoroughly
documented. On the other hand, based on our benchmarks, we can safely assert that
virtual machines do a very good work in sizing memory segments.

7 Related work
Measuring J2EE application performance can be a difficult task. The performance is usually
measured through a benchmarking process, and many benchmarks were developed as an at-
tempt to standarize J2EE perfomance metrics. Popular ones are the ECperf [8] and the RUBiS



[3] benchmarks. Pugh and Spacco [20] show that the results reported in [3] are not valid. They
also assert that benchmark results can be greatly affected by a number parameters on the the
database server, the transaction engine or the garbage collector.

Several studies have comparatively evaluated the performance of various garbage collection
strategies on the same virtual machine; in fact, most research in the field of garbage collection
usually entails the benchmarking of a newly proposed collection strategy against established
ones. Interesting work includes the papers by Blackburn et al [7] and Hertz et al [15] which
try to quantify the real performance impact of various garbage collection implementations on
real world applications and also the work presented by Attanasio et al [5] which compares all
known parallel GC implementations.

8 Conclusions and future work
Tuning the Java garbage collector for optimal performance in server environments has long
been regarded as a difficult and complex exercise. This paper presented an empirical method
and its evaluation using server class hardware and popular implementations of the JVM. The
complexity and subsequent unpredictability of modern virtual machines proved a negative fac-
tor for optimally configuring the garbage collector. A limitation of our work is the fact that we
only tested one application, on one hardware and software platform. However, the guidelines
we presented are generally applicable and do not depend on any combination of hardware or
software.

This work can be extended by examining the behaviour of more application server bench-
marks on more virtual machines. Also, the verbose garbage collection output, present in most
virtual machines, can provide useful hints for tuning the garbage collector for a specific virtual
machine; mining through the results of multiple virtual machines running a variety of bench-
marks could reveal interesting generic rules.
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