
A Domain-specific Language for Intrusion Detection

Diomidis Spinellis and Dimitris Gritzalis

May 30, 2000

Abstract

We describe the use of a domain-specific language
(DSL) for expressing critical design values and
constraints in an intrusion detection application.
Through the use of this specialised language infor-
mation that is critical to the correct operation of
the software can be expressed in a form that can
be easily drafted, verified, and maintained by do-
main experts (security officers) thus minimising the
risk inherent from the mediation of software engi-
neers. Our application, panoptis is a DSL-based
low-cost, easy-to-use intrusion detection system us-
ing the process accounting records kept by most
Unix systems. A set of databases contain resource
usage profiles for processes, terminals, users, and
time intervals. Panoptis monitors new process data
against the recorded profiles and reports on entities
diverging from the established resource usage en-
velopes implying possible data security threats.

Keywords

Domain-specific languages, security monitoring, in-
trusion detection, Unix process accounting.

Proceedinds of the 1st ACM Workshop on Intrusion Detection
Systems ACM, November 2000.

This is a machine-readable rendering of a working paper draft
that led to a publication. The publication should always be cited
in preference to this draft using the reference in the previous foot-
note. This material is presented to ensure timely dissemination
of scholarly and technical work. Copyright and all rights therein
are retained by authors or by other copyright holders. All persons
copying this information are expected to adhere to the terms and
constraints invoked by each author’s copyright. In most cases,
these works may not be reposted without the explicit permission
of the copyright holder.

University of the Aegean, Department of Information and
Communication Systems, Karlovasi, Greece

Athens University of Economics and Business, Department
of Informatics, Athens, Greece

1 Introduction

Panoptis1, is an intrusion detection system based
on the process accounting records produced by all
widely-used versions of Unix. These records, origi-
nally intended for producing billing information, can
be used to detect anomalous situations and alert the
security administrators. The voluminous nature of
the process accounting records prohibits manual in-
spection; Panoptis keeps detailed databases keyed by
users, terminals, processes, and time intervals con-
taining typical usage profiles. A novel aspect of
Panoptis is the use of a domain-specific language
(DSL) for the specification of the items that will be
checked.

Panoptis detects and reports all entities that exe-
cute outside the defined profile envelopes and auto-
matically updates the databases to reduce the admin-
istrative burden and reporting volume. On a system
that has an established pattern of use entities out-
side the normal usage envelopes are likely to be as-
sociated with information security breaches. Data
threats that can be detected in this way include wire-
tapping, browsing, leakage, tampering, and mas-
querading [Den83]. An example of Panoptis’s out-
put can be seen in Figure 1.

The heuristic and quantitative nature of our ap-
proach extends the range of data security threats
that can be detected beyond the closed computer
system environment into the organisational environ-
ment that hosts Panoptis. As an example Panoptis
could detect an employee transferring inordinately
large amounts of data to a computer outside the or-
ganisation even if that employee had proper system
authorisations to perform such transfers. Although
Panoptis was implemented under the Unix operating
system the approach and techniques we used are ap-
plicable to other operating systems keeping process
accounting records. As an example, the Windows
NT audit event log can be used in a similar way.

1Argos-Panoptis — the one who can see everything — is a
Greek mythology canine creature whose body is covered with
eyes. Even when Panoptis is sleeping half of its eyes remain open.
For this it was given the task of guarding Io one of Zeus’ lovers.

1

Database Users*Commands, key [root/grep]:
New maximum user time (2.52 / 2.08)
New maximum disk block input/output (10.94 / 8)
New maximum clock time (14.55 / 13.63)
New maximum character input/output (18427 / 13097)

Command: grep Terminal: tty01 User: root
Executed from: 13/06/95 12:30:55 to: 13/06/95 12:31:09 (14.55 seconds)
spending 1.73 seconds in kernel space and 2.52 seconds in user space
(4.25 total) and using the CPU for 29% of the time.
Character I/O: 18427 characters (average I/O: 4335.74 characters/CPU second)
Disk I/O: 10.94 K (average I/O: 2.57 K/CPU second)
Memory accounted: 0.88 K (average size: 0.10 K)

Figure 1: An example of an Panoptis report.

1.1 Domain-specific languages

A domain-specific language [Ram97] is a program-
ming language tailored specifically for an appli-
cation domain: rather than being general purpose
it captures precisely the domain’s semantics. Ex-
amples of DSLs include lex and yacc [JL87] used
for program lexical analysis and parsing, HTML

[BLC95] used for document mark-up, and VHDL

used for electronic hardware descriptions. Domain-
specific languages allow the concise description of
an application’s logic reducing the semantic distance
between the problem and the program [BBH 94,
SG97].

DSLs are, by definition, special purpose lan-
guages. Any system architecture encompassing one
or more DSLs is typically structured as a confeder-
ation of modules; some implemented in one of the
DSLs and the rest implemented using a general pur-
pose programming language. As a design choice for
implementing security software DSLs present two
distinct advantages over a “hard-coded” program
logic:

Concrete Expression of Security Policies
Security policies are not coded into the
system or stored in an arcane file format; they
are captured in a concrete human-readable
form. Policies expressed in the DSL can be
scrutinised, split, combined, shared, published,
put under release control, printed, commented,
and even be automatically generated by other
applications.

Direct Involvement of the Security Officer The
DSL expression style can often be designed so
as to match the format typically used by the
security officer. This results in keeping the
experts in a very tight software lifecycle loop
where they can directly specify, implement,

verify, and validate, without the need of
coding intermediaries. Even if the DSL is not
high-level enough to be used as a specification
language by the security officer, it may still
be possible to involve the security officer in
code walkthroughts far more productive than
those over code expressed in a general purpose
language.

1.2 Unix Process Accounting Records

Most modern versions of Unix provide the capability
of process accounting[LMKQ88, pp. 62–63]. The
operating system kernel creates a file containing an
accounting record for every process that terminates.
Each record contains for a given process the follow-
ing vector:

, : its user and group identification,

: its controlling terminal,

: the time the process began,

, , : the real, system and user times used
by the process,

: its total memory usage,

, : its total character and disk in-
put/output,

: the name of the command that started the
process, and

, : its exit status and associated flags.

Based on the above data the following quantities
can be derived for every terminated process:

: the local time of the day the process started
found by converting the time the process began
to local time,

2

: the total CPU time consumed by the process
as the sum of the system and user times (

),

: average memory usage as the memory ac-
counted divided by the CPU time (),

, : average character, and disk in-
put/output as the respective quantity divided by
the CPU time (,),

: CPU “hog” factor as the process’s CPU time
divided by the actual time it executed (),
and

the number of times the process run in a specific
time interval.

A number of programs are typically provided for
processing the accounting records, but these are
geared towards providing billing and system perfor-
mance tuning information. In the following sections
we will describe how a domain-specific language
can be used to specify the way parts of the process
accounting data space can be grouped and checked
for intrusion detection purposes.

2 Intrusion Detection Data
Space

Panoptis monitors the system processes in three in-
dependent dimensions:

1. The accounting data This data corresponds to
a specific process, terminal, and user and con-
sists of the values described in the previous sec-
tion. It can be monitored for being above or be-
low specific limits which are based on the sys-
tem’s historical data collected by Panoptis.

2. The monitored entity A monitored entity can
be one of the following:

: a user,

: a terminal,

: a process,

: a process executed by a specific
user, and

: a user working on a specific ter-
minal.

An abnormal behaviour which could signify a
security breach can be associated with any of
the above entities. For example

a user may run programs at an unusual
time (),

a process may consume an inordinate
amount of CPU time (),

a terminal may be exhibit abnormal in-
put/output behaviour (e.g.),

a user may execute an uncommon com-
mand, or

a user may work from an unusual termi-
nal.

3. The monitoring time interval Time intervals
are defined by the system administrator. Typi-
cal intervals that provide useful data are:

A fixed period As described in section 4, we
found that storing data for twenty minute
intervals, a day, and a week captures
enough information about the system be-
haviour to cover a large number of possi-
ble security breach attempts. The twenty
minute interval is useful for quickly de-
tecting a large number of invocations of
an important program such the password
changing command, while the day and
week databases can be run with a larger
set of checks to detect finer changes in the
system’s behaviour indicating attempted
security breaches.

A specific period Panoptis can store separate
data for every day and every hour (e.g.
Mon, Tue, ... and 1200h, 1300h, ...)
to capture behaviour that is occurring in
non-standard days or times. An exam-
ple of a security breach that can be de-
tected using this method is the execution
of an application used by personnel work-
ing nine to five late at night or over the
weekend. We found it more convenient
to group the specific period time interval
databases into groups of larger granularity
such as workdays/weekend.

Continuous monitoring Finally, Panoptis can
be run in a mode whereby the account-
ing log is continuously monitored and
all records that are appended to it are
checked against the specified databases.
This execution mode provides immediate
notification of possible security problems.
A system administrator can run Panoptis
in this mode with its output redirected to
a hardcopy terminal to create a log that
can not be erased even when the security
of the system is compromised.

The three dimensions described above can be tai-
lored via a configuration file to a setup that is suit-
able for the system being monitored. In addition,

3

terminal and user names can be grouped in logical
sets to avoid the generation of redundant messages.
As an example all users of the same application or
toolset can be defined as one group, because we ex-
pect them to have similar usage profiles. One profile
will be defined and used for all of them, but any leap
outside the profile will be directly attributable to a
specific user. Similarly, a pool of terminals that are
interchangeably used in a room should be grouped
together, because they too will have statistically sim-
ilar usage profiles.

3 The Panoptis Domain-specific
Language

Panoptis consists of a single program that reads ac-
counting records and updates profile databases op-
tionally reporting cases that fall outside the exist-
ing profiles. Its arguments are a DSL-based config-
uration file that directs the program operation, the
database to update, the interval to operate upon, and
an optional list of process accounting files (the sys-
tem accounting file /var/adm/pacct is the de-
fault record source).

Panoptis is configured by a domain-specific lan-
guage. The language supports bindings over the fol-
lowing distinct databases:

tty Terminals.

uid Users.

uidtty Users logged in on a specific terminal.

comm Commands.

uidcomm Users executing a specific command.

The basename used for storing each one of the
above databases is specified as a parameter in the
panoptis invocation. As a result, different databases
can be used to store process accounting history for
different hosts, time intervals, or monitoring config-
urations.

For every process accounting record the following
attributes can be checked:

maxaxsig Signal exit status.

maxhog Maximum CPU hog factor (CPU time over
elapsed time).

maxmem Maximum memory usage.

maxavrw Maximum average disk block in-
put/output.

maxstime Maximum system time.

minbmin Minimum daily start time (start time
whithin the 24 hour interval).

maxutime Maximum user time.

maxbmin Maximum daily start time.

maxasu Superuser status.

maxcount Maximum number of times a given
record has appeared in the database.

maxrw Maximum disk block input/output.

maxacore Core dump flag.

maxavio Maximum average character input/output.

maxafork Fork status.

maxetime Maximum clock time.

maxavmem Maximum average memory usage.

maxio Maximum character input/output.

Panoptis will report process accounting records
whose attributes fall above (below) the values al-
ready recorded in a given database.

The panoptis monitoring options are also set in
the DSL configuration file. The file contains the fol-
lowing elements:

Assignments Specific variables can be assigned
values to control the panoptis behaviour.

Monitoring specifications These are given using
the relation dbcheck(database, attribute ...) and
specify that the given attributes should be mon-
itored in a given database. The special attribute
ALL can be used to specify that all attributes
shall be monitored.

User maps These are given using the relation
usermap(abstract user, username ...) and spec-
ify that all concrete users specified will be
mapped to the given abstract user. This relation
can be used to group users into specific moni-
toring groups (e.g. power users, administrators,
typists).

Terminal maps These are given using the relation
termmap(abstract terminal, terminal name ...)
and specify that all concrete terminals specified
will be mapped to the given abstract terminal.
This relation can be used to group terminals
into specific monitoring groups (e.g. network
terminals, printers, data entry, etc.).

In addition, the following variables can be speci-
fied in a configuration file:

4

#
Configuration file for host pooh
#
$Id: paper.tex 1.6 2000/05/30 12:26:58 dds Exp $
#

HZ = 100 # "Floating point" value divisor
bigend = FALSE # Set to TRUE for big endian (e.g. Sun), FALSE for

little endian (e.g. VAX, Intel x86)
map = TRUE # Set to TRUE to map uid/tty numbers to names
EPSILON = 0.001 # New maxima difference threshold
report = TRUE # Set to TRUE to report new/updated entries
unlink = FALSE # Set to TRUE to start fresh

Reporting procedure
output = ’| /usr/bin/tee /dev/console | /bin/mail root’

Databases and parameters to check
dbcheck(tty, minbmin, maxbmin, maxio, maxcount) # Terminals
dbcheck(comm, ALL) # Commands
dbcheck(uid, ALL) # Users
dbcheck(uidtty, maxcount) # Users on a terminal
dbcheck(uidcomm, minbmin, maxbmin, maxutime, # Users of a command

maxstime, maxmem, maxrw, maxcount, maxasu)

Map users and terminals into groups
usermap(caduser, john, marry, jill)
usermap(admin, root, bin, uucp, mail, news)

termmap(room202, tty31, tty32, tty33, tty34, tty35)
termmap(ptys, ttyp01, ttyp02, ttyp03, ttyp04, ttyp05, ttyp06)

Figure 2: Sample configuration file.

report Boolean variable. Set to TRUE to report
new/updated entries.

countreport Boolean variable. Set to TRUE to re-
port time the command was started.

unlink Boolean variable. Set to TRUE to clear ex-
isting database entries.

map Boolean variable. Set to TRUE to map uid/tty
numbers to names based on the mapping of the
system where panoptis is run.

HZ Numeric variable. The divisor used by the sys-
tem to store ”floating point” values.

EPSILON Numeric variable. Maximum difference
threshold. When this threshold is exceeded
panoptis will report the specific command.

acct String variable. Set to specify the system
source of the accounting records. The follow-
ing values are currently supported:

’SVR3’ SunOS 4.X and XENIX,

’Linux’ e.g. Linux 2.2,

’SVR4’ POSIX, XOPEN, e.g. SunOS 5.6,

’fBSD’ Free BSD e.g. Free BSD 3.4.

bigend Boolean variable. Set to TRUE for big en-
dian (e.g. Sun), FALSE for little endian (e.g.
VAX, x86) accounting records.

output String variable. Set to specify how panoptis
results will be output. The Perl syntax used for
opening files can be used.

A sample configuration file is reproduced in Fig-
ure 2. Two variables (HZ and bigend) define the
machine’s hardware characteristics. These — in
conjunction with the option map which specifies
whether the local system user and terminal names
should be used for reporting — made it possible for
us to run Panoptis on our system cross-checking the
accounting files of other systems. A possible setup

5

based on this capability could be a centralised secu-
rity server monitoring a large number of remote sys-
tems. The report and unlink settings are used
for creating initial profiles. Setting unlink will
create a fresh set of profile data. In that case re-
port could be disabled while historical data is col-
lected and stored in the database. The output pa-
rameter specifies the filename or process to receive
Panoptis’s output. In this example all reports are
printed on the system console and a copy is mailed
to the system administrator account.

The next section of the configuration file specifies
for each of the databases outlined in section 2 the
parameters — as described in section 1.2 — to be
checked. These specifications are used to customise
the profile databases for storing only relevant profile
data. In the example we provide terminals (tty) are
monitored for use outside the normal hours in or-
der to detect physical or network security breaches
and the number of characters transfered in order to
detect attempts to transfer data outside the system.
Commands (comm) and users (uid) have all their
parameters monitored as these should quickly settle
to an established pattern minimising false alarms. A
subsequent divergence of any of the parameters is
likely to be interesting. The database containing the
users of a specific terminal is only monitored for the
number of commands run from that terminal in or-
der to catch intruders. Finally, the database contain-
ing data for every command a user executes (uid-
comm) is monitored for the time that process is run,
its use of CPU time, memory, and disk I/O, the num-
ber of times it was executed, and whether it was exe-
cuted with superuser privileges. Divergence of these
parameters can pinpoint Trojan horses, viruses, en-
cryption crackers, and data browsers.

The last section of the configuration file contains
the grouping tuples used to specify logical sets of
terminals and users. In our example the users of the
CAD application form one group (caduser) and
the administrative accounts another (admin). All
other system users are stored and checked as indi-
viduals. Records in the databases that are keyed by a
user (uid, uidtty, uidcomm) will be reflect
the behaviour of the whole group instead of a spe-
cific user. Similarly, some terminals that are shared
in one room are checked as one group. Pseudo-
terminals (ptys) which are often used for network
connections are also grouped together as they are as-
signed to incoming connections in a random way.

Panoptis is typically installed as a program to
be executed by the system’s command scheduler
crontab. Additionally, Panoptis can be run at system
startup as a background task to continuously moni-
tor the accounting files. A sample scheduling file for

Panoptis that we used on our system is reproduced
in Figure 3. In this example a few quick checks
are run every twenty minutes (on the fifth, 25th, and
45th minute of the hour) against the profiles stored
in the pooh.20min database. Every hour a more
complete check is run. Its profiles are split into two
databases, one stores the working hour (8am to 6pm)
profiles (pooh.workhour) and one the night-hour
(7pm to 7am) profiles (pooh.late). Daily checks
are run every night at 4:50am. Again, the pro-
file databases are split between workdays and week-
ends. Finally, the complete set of accounting files is
checked using a full configuration every Sunday at
2:20am.

4 Evaluation

A monitoring system can fail in two different ways:

Type I error Failing to report an important event
(since, false negative).

Type II error Reporting a large number of unim-
portant events letting important ones passing
unnoticed (false positive, noise).

In addition, a security monitoring system can fail
either because an intruder uses an attack mode not
anticipated or covered by its design (a system limi-
tation), or because the intruder intentionally tries to
get around it (a system weakness).

Panoptis’s heuristic nature will result in both si-
lence and noise. Noise is gradually eliminated
as more and more cases are added to the pro-
file data. Silence can result either from security
breaches that are outside the system’s domain, or
from an intruder’s deliberate exploitation of the sys-
tem’s weaknesses. As the system is based on pro-
cess accounting records, a number of other impor-
tant information that could lead to the detection of
security problems is not examined. Examples of
other entities that could be monitored and included
in the profile data include system calls made by a
process, network connections, and patterns of file ac-
cess. Monitoring these entities would require operat-
ing system kernel modifications [BK88]; we decided
against them in order to keep the system portable and
easy to install.

An intruder knowing Panoptis’s architecture and
configuration could also foil the system by:

generating legitimate “noise” in order to hide a
culprit process,

an attack based on a non-terminating process
(such as system daemons) which are not nor-
mally logged,

6

#
Panoptis crontab file for host pooh
#
The format of this file is:
Hour Minute Day-of-month Month Day-of-week Command
* 5,25,45 * * * panoptis pooh-quick.cfg pooh.20min 20m
8-18 05 * * * panoptis pooh-hour.cfg pooh.workhour 1h
19-7 05 * * * panoptis pooh-hour.cfg pooh.late 1h
4 50 * * 1-5 panoptis pooh-day.cfg pooh.workday 24h
4 50 * * 6,0 panoptis pooh-day.cfg pooh.weekend 24h
2 20 * * 0 panoptis pooh-full.cfg pooh.weekly 7d \

/usr/adm/pacct? /usr/adm/pacct

Figure 3: Sample scheduling file.

using an interpreter such as Perl [WS90] to ac-
cess system resources without invoking exter-
nal processes,

changing the name of the offending command
to a benign name,

gradually and legitimately changing the us-
age profile of an entity avoiding the suspicion
caused by a sudden change,

filling the disk where administrative data is kept
in order to disable process accounting, or

exploiting Panoptis’s relatively large time win-
dow between the occurrence of a suspicious
event and its detection.

On the plus side, Panoptis’s open ended nature can
result in the detection of security problems unantici-
pated during its design and deployment. Some of the
attacks described can be defended by careful instal-
lation and configuration. Countermeasures include
keeping the accounting records in a filesystem that
has no public writable directories (by default process
accounting records and the temporary file directory
reside on the same filesystem), and the protection of
the configuration file and the reports from unautho-
rised reading to make the planning of an undetected
attack difficult.

We have run Panoptis on the accounting records
of our site, an academic site X-terminal server, a
dialup/WWW server and a C/database development
machine. After some time of tuning and profile col-
lection Panoptis’s reports are reduced to a steady
trickle reflecting the users change of interests or
mode of work and the introduction of new programs
on the system. Although Panoptis has not yet caught
any security violations the results we have so far ob-
tained are encouraging. In some cases Panoptis has

helped us identify sources of system performance
degradation or potential security problems. Further-
more, in a Gedankenexperiment we performed based
on five security breaches described in [BKS90] we
found that four of them could have been caught by
Panoptis.

5 Related Work

In an early study on real-time intrusion detection
[And80], it was suggested that an intruder could
be detectedby monitoring certain system-wide pa-
rameters (i.e. CPU use, memory use, disk activity,
keystroke dynamics, etc.), and compare them with
what had been historically established as normal or
expected for that facility. It was, also, suggested
to profile the normal behavior of programs, files,
and other objects. This is often called a statistical
anomaly detection approach. Until this study, the
relevant work focused on developing procedures and
algorithms for automating the offline security analy-
sis of audit trails.

On the basis of the above, SRI scientists de-
veloped IDES (Intrusion Detection Expert System)
[L 92] and Next-generation IDES [A 95]. IDES is
a system that continuously monitors user behavior
and detects suspicious behavior as it occurs. IDES

takes the approach that intrusions can be detected
by flagging departures from historically established
norms of behavior for individual users. To support
the idea, various intrusion detection measures are
profiled for each user and statistical processing of
them is carried out by the monitoring facility.

Intruders often use known paths to attack a sys-
tem (e.g. programmed password attacks, access to
privileged files, exploitation of known vulnerabili-
ties, etc.). With a model-based reasoning, specific
models of defending to prescribed attacks can be de-

7

veloped [GL91]. Other approaches are either defin-
ing acceptable, as opposed to intrusive, behavior
[Kar87], or — on earlier stages of technology — are
based on the introduction of trap doors for intruders
(i.e. “bogus” user accounts with “magic” passwords,
etc.) [Lin75]. None of them is sufficient alone, since
it addresses a specific type of threats.

Several studies have demonstrated that the use of
specialized (security-focused) audit trails is needed
for security purposes. In addition to the raw audit
data itself, additional data could prove to be useful
or necessary for intrusion detection: external facts
(e.g. changes in user job description), supporting
facts (e.g. file attributes), and profiles of expected
behavior (e.g. time schedules). It seems to be a fact,
that effective intrusion detection will not come into
widespread use until good security auditing mecha-
nisms are in place [Lun93].

The appropriate level of auditing is really impor-
tant. It has been suggested [Kuh86, Pic87] that the
audit should be performed at the lowest possible
level (e.g. monitoring system service calls), because
in this case to circumvent auditing is harder.

The more recent studies on intrusion detection
focus more on the topology of the modern infor-
mation systems environment. As a result, network
intrusion detection systems have been developed
[S 99, VK98]. The cornerstone of these systems
is also a domain-specific language that enables con-
cise specification of network packet contents under
normal/expected and/or attack conditions. These
approaches claim to have easy-to-develop intrusion
specifications, to carry out high-speed and large-
volume monitoring, to be robust and extensible, and
to use a comprehensive evaluation framework.

6 Conclusions and Further
Work

The use of a domain-specific language can make
process accounting data ammenable to intrusion de-
tection. Panoptis first expands the accounting data
space by deriving new quantities from the existing
records and scattering the results into the three di-
mensions of value, monitored entity, and time inter-
val. It then analyses the data by comparing it against
the profiles of the past it has stored on a database
and reports any significant changes. The numerous
parameters that affect Panoptis’s performance can be
easily tuned to match the characteristics of the sys-
tem being supervised forming heuristic rules. This
approach is flexible and provides useful results while
limiting extraneous noise.

After using Panoptis for some time we found out

that the data evaluated can be expanded in a number
of ways by increasing the number of derived prop-
erties (e.g. adding running averages). In addition,
report triggering can be made more selective by in-
troducing thresholds, counters, and combined con-
ditions. This additional complexity will require the
provision of a more sophisticated configuration sys-
tem, probably a rule-based language. We are cur-
rently investigating the requirement specifications
for such a language. We are also looking for ways to
automate the administration of Panoptis’s configura-
tion based on templates suitable for different types
of systems and checks.

References

[A 95] D. Anderson et al. Next-generation
intrusion detection expert system
(NIDES): A summary. Technical
Report SRI-CSL-95-07, SRI Int’l.,
1995.

[And80] J. Anderson. Computer security threat
monitoring and surveillance. Technical
report, J. Anderson Co., Pennsylvania,
April 1980.

[BBH 94] J. Bell, F. Bellegarde, J. Hook, R. B.
Kieburtz, A. Kotov, J. Lewis, L. McK-
inney, D. P. Oliva, T. Sheard, L. Tong,
L. Walton, and T. Zhou. Software de-
sign for reliability and reuse: a proof-
of-concept demonstration. In Confer-
ence on TRI-Ada ’94, pages 396–404.
ACM, ACM Press, 1994.

[BK88] David S. Bauser and Michael E.
Koblentz. NIDX — a real-time
intrusion detection expert system.
In USENIX Conference Proceed-
ings, pages 261–273, San Francisco,
CA, USA, Summer 1988. Usenix
Association.

[BKS90] Fuat Baran, Howard Kaye, and Mar-
garitta Suarez. Security breaches: Five
recent incidents at Columbia university.
In UNIX Security Workshop II, pages
151–171, Portland, OR, USA, August
1990. Usenix Association.

[BLC95] T. Berners-Lee and D. Connolly. RFC
1866: Hypertext Markup Language —
2.0, November 1995. Status: PRO-
POSED STANDARD.

8

[Den83] Dorothy Elizabeth Robling Denning.
Cryptography and Data Security.
Addison-Wesley, 1983.

[GL91] T. Garvey and T. Lunt. Model-based
intrusion detection. In 14th National
Computer Security Conference, 1991.

[JL87] Stephen C. Johnson and Michael E.
Lesk. Language development tools.
Bell System Technical Journal,
56(6):2155–2176, July-August 1987.

[Kar87] P. Karger. Limiting the damage poten-
tial of discretionary Trojan horses. In
IEEE Symposium on Security and Pri-
vacy, pages 32–37. IEEE Press, 1987.

[Kuh86] J. Kuhn. Research towards intrusion de-
tection through the automated abstrac-
tion of audit data. In 9th National Com-
puter Security Conference, 1986.

[L 92] T. Lunt et al. A real-time intrusion-
detection expert system. Technical Re-
port SRI-CSL-92-05, SRI Int’l., 1992.

[Lin75] R. Linde. Operating system penetra-
tion. In National Computer Confer-
ence, 1975.

[LMKQ88] Samuel J. Leffler, Marshall Kirk
McKusick, Michael J. Karels, and
John S. Quarterman. The Design and
Implementation of the 4.3BSD Unix
Operating System. Addison-Wesley,
1988.

[Lun93] T. Lunt. A survey of intrusion detec-
tion techniques. Computers and Secu-
rity, 12(4):405–418, June 1993.

[Pic87] J. Picciotto. The design of an effective
auditing subsystem. In IEEE Sympo-
sium on Research in Security and Pri-
vacy, pages 13–22. IEEE Press, 1987.

[Ram97] J. Christopher Ramming, editor.
USENIX Conference on Domain-
Specific Languages, Santa Monica,
CA, USA, October 1997. Usenix
Association.

[S 99] R. Sekar et al. A high-performance
network intrusion detection system. In
6th ACM Conference on Computer and
Communication Security, pages 8–17.
ACM Press, 1999.

[SG97] Diomidis Spinellis and V. Guruprasad.
Lightweight languages as software en-
gineering tools. In Ramming [Ram97],
pages 67–76.

[VK98] G. Vigna and R. Kemmerer. Net-
STAT: A network-based intrusion de-
tection approach. In Computer Security
Applications Conference, 1998.

[WS90] Larry Wall and Randal L. Schwartz.
Programming Perl. O’Reilly and As-
sociates, Sebastopol, CA, USA, 1990.

9

