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We present and compare two stochastic approaches for solving the buffer allocation
problem in reliable production lines. The problem entails the determination of near op-
timal buffer allocation plans in large production lines with the objective of maximizing
their throughput. The allocation plan is calculated subject to a given amount of total
buffer slots using simulated annealing and genetic algorithms. The throughput is calcu-
lated utilizing a decomposition method.
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1 Introduction and Literature Review

The allocation of buffers between workstations is a major optimization problem faced
by manufacturing systems designers. It has to do with devising an allocation plan for
distributing a certain amount of buffer space among the intermediate buffers of a pro-
duction line. It is a very complex task that must account for the random fluctuations in
mean production rates of the individual workstations of the lines. To solve this problem
there is a need for two different tools. The first is a tool that calculates the performance
measure of the line which has to be optimized (e.g., the throughput or the mean work-in-
process). This may be an evaluative method such as simulation, a decomposition method
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[Ger87, DF93], or a traditional Markovian state model in conjunction with an exact nu-
merical algorithm like [HPB93]. The second tool is a search (generative) method that
tries to determine an optimal or near optimal value for the decision variables, which in
our case are the buffer capacities of the intermediate buffer locations in the line. Examples
of such methods are the classical search methods such as the well-known Hooke-Jeeves
method, various heuristic methods, knowledge based methods, genetic algorithms, and
simulated annealing.

Evaluative and generative (optimization) models can be combined in a ‘closed loop’
configuration by using feedback from an evaluative model to modify the decision taken
by the generative model. In such a configuration the evaluative model is used to obtain
the value of the objective function for a set of inputs. The value of the objective function
is then communicated to the generative model which uses it as an objective criterion in its
search for an optimal solution. In the rest of this paper we will use the formalism
to describe a closed loop system using the generative method and the evaluative method

. The generative models that will be used in this paper are:

CE complete enumeration,

RE reduced enumeration,

GA genetic algorithms, and

SA simulated annealing.

Furthermore, two evaluative models will be used:

Exact the exact numerical algorithm [HPB93], and

Deco the decomposition algorithm numbered as A3 in [DF93].

For a systematic review of the existing literature in the area of evaluative and genera-
tive models of manufacturing systems, the interested reader is addressed, respectively, to
two review papers by [DG92] and [PH96] and to the books by [PHB93], [AS93], [BS93],
[Ger94], [Per94] and [Alt97], among others.

Several researchers have studied the problem of optimizing buffer allocation to maxi-
mize the efficiency of a reliable production line, (see for example, [HS91], and [HSB93]).
These methods are based on comprehensive studies to characterize the optimal buffer allo-
cation pattern. Authors have provided extensive numerical results for balanced lines with
up to 6 stations and limited results for lines with up to 9 stations. However, few methods
can handle this problem for large production lines, in a computationally efficient way. In
this paper we compare two stochastic approaches suitable for large production lines, one
based on genetic algoriths and one based on simulated annealing. Details on how these
methods can be applied to the problem are given in [BDI95] which describes the applica-
tion of genetic algorithms for the buffer allocation in asynchronous assembly systems and
in [SP99b] for a corresponding approach using simulated annealing. The implementation
of both approaches in this paper works in close cooperation with a decomposition method
as given in [DF93].

Simulated annealing is an adaptation of the simulation of physical thermodynamic
annealing principles described by [MRR 53] to the combinatorial optimization problems
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[KJV83, Cer85]. Similar to genetic algorithms and tabu search techniques [Glo90] it
follows the “local improvement” paradigm for harnessing the exponential complexity of
the solution space. The algorithm is based on randomization techniques. An overview of
algorithms based on such techniques can be found in [GSB94]. A complete presentation
of the method and its applications can be found in [LA87] and accessible algorithms for its
implementation are presented by [CMMR87, PFTV88]. As a tool for operational research
simulated annealing is presented by [Egl90], while [KAJ94] provide a complete survey
of simulated annealing applications to operations research problems.

Genetic algorithms [Hol75, Gol89, For96] are global optimization techniques that
avoid many of the shortcomings exhibited by local search techniques on difficult search
spaces, such as the buffer allocation problem. Genetic algorithm applications are given
in [Gol94], their use for modelling, design, and process control is presented in [Kar93],
while the methodology used for optimizing simulated systems can be found in [TA95].

This paper is organized as follows. Section 2 states the problem and the assumptions
of the model, whereas, Section 3 describes the evaluation methodology and associated
implementation decisions. In Section 4, we compare the numerical results obtained from
the algorithms. Finally, Section 5 concludes the paper and suggests some future research
directions.

2 Assumptions of the Model and the Buffer Allocation
Problem

In asynchronous production lines, each part enters the system from the first station, passes
in order from all stations and the intermediate buffer locations and exits the line from the
last station. The flow of the parts works as follows: in case a station has completed its
processing and the next buffer has space available, the processed part is passed on. Then,
the station starts processing a new part that is taken from its input buffer. In case the buffer
has no parts, the station remains empty until a new part is placed in the buffer. This type
of line is subject to manufacturing blocking (or blocking after service) and starving.

Assumptions of the model: It is assumed that the first station is never starved and the
last station is never blocked. The processing (service) times at each station are assumed
to be independent random variables following the exponential distribution, with mean
service rates, , . In our model, the stations of the line are assumed to be
perfectly reliable, that is, breakdowns are not allowed.

The exponentiality of the processing times as well as the absolute reliability of the
line’s workstations are rather unrealistic assumptions. However, the service completion
times can be exponential or can be approximated by an exponential distribution. The
variability in completion times may be attributed to failures and repairs which implicitly
exist in the problem at hand. Following this view, the proposed model may be applied
to any unreliable production line under the exponentiality assumptions for the service
completion times.

Figure 1 depicts a -station line that has intermediate locations for buffers,
labelled .

The basic performance measures in the analysis of production lines are the throughput
(or mean production rate) and the average work-in-process (WIP) or equivalently the

3



M1 B2 M2 B3 BK MK

Mi

Bi

Station i

Buffer i

Figure 1: A -station production line with intermediate buffers

average production (sojourn) time.
The object of the present work is the buffering of asynchronous, reliable production

lines with the assumptions given above. The objective is the maximization of the line’s
throughput, subject to a given total buffer space.

The buffer allocation problem: In mathematical terms, our problem can be stated as
follows:

P Find so as to

(1)

subject to:

(2)

where: is a fixed nonnegative integer, denoting the total buffer space available in
the production line.

is the ‘buffer vector’, i.e., a vector with elements the buffer
capacities of the buffers.

, denotes the throughput of the -station line. This is a function of the mean ser-
vice rates of the stations, , of the coefficients of variation,

, of the service times and the buffer capacities, .

Methodology of investigation: To evaluate approaches for solving the optimal buffer
allocation problem (P) for large production lines, we have performed the following steps:

S1 We utilized the decomposition method given by [DF93], as an evaluative tool, to
determine the throughput of the lines. The algorithm computes approximately the
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throughput for any -station line with finite intermediate buffers and exponentially
distributed processing times.

The number of feasible allocations of buffer slots among the intermediate
buffer locations increases dramatically with and and is given by the formula:

(3)

S2 To find the buffer allocation that maximizes the throughput of the line, we utilized a
simulated annealing and a genetic algorithm method specifically adapted for solv-
ing this problem. Our approach is described in the following section.

3 Evaluation Methodology

In order to evaluate the applicability of the stochastic methods to the buffer allocation
problem we designed and implemented a system to calculate the optimum buffer config-
uration for a given reliable production line using a variety of algorithms [SP99a]. The
system takes as input:

the number of stations in the production line, ,

the available buffer space, , and

the station mean service rates, , .

Based on the above input, the system calculates the buffer allocations
for the maximal line throughput. Furthermore, the system is instrumented to provide as
part of the solution the throughput of the suggested configuration, as well as the number
of different configurations that were tried. The line throughput is used to evaluate the
quality of the suggested configuration when compared with the throughput calculated by
other methods. The number of different configurations tried, is used as an objective per-
formance criterion, because the configuration evaluation step is the dominant execution
time factor and the basic building block of all optimization methods.

We ran a number of tests on both balanced and unbalanced lines and compared the
simulated annealing results against the results obtained by other methods. For short lines
and limited buffer space a complete enumeration of all configurations provided an accu-
rate measure when comparing with the simulated annealing results. For larger configura-
tions we used a reduced enumeration in order to provide the comparative measure.

Reduced enumeration is based on the experimental observation that the absolute dif-
ference of the respective elements of the optimal buffer allocation (OBA) vectors with
and buffer slots is less than or equal to 1:

In this way, we have been able to derive the OBA by induction for any number of
buffer slots that are to be allocated among the buffer locations of the line. The
reduction works as follows: when and are given one needs to determine all the
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OBA vectors for and then for by searching only the values
of , and . Furthermore, this reduction starts after a number of total
buffer slots . To quantify the reduction, by applying the improved enumeration it has
been experimentally observed that the number of iterations were reduced by at least 60%
for short lines. This reduction accounts for well over 90% for large production lines (with
more than 12 stations). Recall that the number of feasible allocations of buffer slots
among the intermediate buffer locations increases dramatically with and and
is given by formula (3).

Simulated annealing is an optimization method suitable for combinatorial minimiza-
tion problems. Such problems exhibit a discrete, factorially large, configuration space.
In common with all paradigms based on “local improvements” the simulated annealing
method starts with a non-optimal initial configuration (which may be chosen at random)
and works on improving it by selecting a new configuration using a suitable mechanism
(at random in the simulated annealing case) and calculating the corresponding cost dif-
ferential ( ). If the cost is reduced, then the new configuration is accepted and the
process repeats until a termination criterion is satisfied. Unfortunately, such methods can
become “trapped” in a local optimum that is far from the global optimum. Simulated an-
nealing avoids this problem by allowing “uphill” moves based on a model of the annealing
process in the physical world.

Our implementation of the simulated annealing algorithm for distributing buffer
space in a -station line — described in detail in [SP99b] — follows the following steps:

1. Set initial line configuration. Set , set
.

2. Set initial temperature . Set .

3. Initialize step and success count. Set , set .

4. Create new line with a random redistribution of buffer space. Move space
from a source buffer to a destination buffer : set , set

, set , set ,
set , set .

5. Calculate energy differential. Set .

6. Decide acceptance of new configuration. Accept all new configurations that are
more efficient and, following the Boltzmann probability distribution, some that are
less efficient: if or , set , set .

7. Repeat for current temperature . Set . If ,
go to step 4.

8. Lower the annealing temperature. Set ( ).

9. Check if progress has been made. If , go to step 3; otherwise the algorithm
terminates.
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Genetic algorithms are also global optimization techniques that avoid many of the
shortcomings exhibited by local search techniques on difficult search spaces. They rely
on modelling the problem as a population of organisms. Every organism represents a
possible valid solution to the problem. Organisms are composed of alleles representing
parts of a given solution. Standard genetic recombination operators are used to create new
organisms out of existing ones by combining alleles of the existing organisms. In addi-
tion, mutations can randomly change the composition of existing organisms. Typically,
the algorithm evaluates all the organisms of the population and creates new organisms
by combining existing ones based on their fitness. This procedure is repeated until the
variance of the population reaches a predefined minimum value.

An important characteristic of our implementation of the genetic algorithm concerns
the representation of the solution. A good representation should ensure that the applica-
tion of standard crossover recombination operators (where a new organism is composed
from parts of two existing ones) would result in a valid new representation. Represent-
ing the line configuration as a vector of buffers allocated across the line is not such a
representation since given two buffer configurations and recombining them as a
new buffer at point so that and will not guar-
antee that i.e. that the resulting line configuration will be composed of
buffers. For this reason we devised an alternative, position-based, representation using a
vector of length equal to the number of buffers . Every element of can take values

representing the position of the given buffer slot within the production line. The
two representations are equivalent; the vector can be mapped to as follows:

if
otherwise

(4)

The position-based representation will generate valid buffer configurations using standard
genetic crossover and mutation operators. Using this representation, the genetic algorithm
we implemented for distributing buffer space in a -station line is described in the
following steps:

1. Initialize a population of size . Set .

2. Evaluate population members creating throughput vector . For : set
.

3. Create roulette selection probability vector . Set .

4. Create new population using crossovers from the previous population. For
: if crossover rate, set , set
, set ; otherwise set by selecting each

using the roulette selection probability vector so that

5. Introduce mutations. For : for : if mutation rate,
set .

6. Keep fittest organism for elitist selection strategy. Select so that , set
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7. Make new population the current population. Set .

8. Loop based on the population’s variance. If maximum variance
go to step 2; otherwise the algorithm terminates with the optimal line setup in .

The implementation of genetic algorithms can be tuned using a number of different
parameters. In our implementation we used the parameters presented in [Gre86], namely
a population size of , a crossover rate of , a mutation rate of , a generation
gap of 1 (the entire population is replaced during each generation), no scaling window,
and an elitist selection strategy (the organism with the best performance survives intact
into the next generation).

The random floating point numbers used for selecting energy differentials
based on the annealing temperature , the crossover points, the mutation
rates, and the selection of organisms are produced using the subtractive method algorithm
described in [Knu81]. Finally, the evaluative function that we used for calculating is
based on the decomposition method [DF93].

4 Method comparison
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Figure 2: Stochastic method operation comparison

Before detailing the comparative results of our examination, it is interesting to visual-
ize the operation of the two stochastic methods. Figure 2 depicts the runtime behaviour of
the two methods. Each point on the two scatter charts represents a given line throughput
value at a specific step of the algorithm. Both charts depict the calculation of the place-
ment of 30 buffers in a balanced line of 15 stations. The simulated annealing algorithm
optimizes a single solution in the specific example in iterations. The solution’s
throughput value oscillates as both better and worse solutions are randomly selected at
each iteration step. As can be seen on the chart, the oscillation width decreases following
the algorithm’s exponential cooling schedule and converges towards the optimal value.

In contrast to the simulated annealing algorithm, the genetic algorithm is based on
the implicit parallelism of the solutions represented by the initial population. Thus, in
the specific example, it terminates with an optimal configuration after 250 generations.
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As the chart demonstrates the search starts with a wide spectrum of different solutions
which are evaluated and evolve in parallel with non-optimal solutions gradually becoming
extinct. Mutations and recombinations regenerate suboptimal solutions, but, due to the
probabilistic organism selection strategy, their survival does not last for long.

Our first comparison experiment concerned the algorithm operation on balanced lines
for cases where exact solutions were known. In Figure 3 we present the optimum through-
put configurations for balanced lines found using the stochastic methods against the through-
put found using complete (for 9 stations) and reduced enumeration techniques. It is ap-
parent that the stochastic algorithm results are almost identical and follow closely the
results obtained by the other methods. Both methods are subject to the reduced evaluative
accuracy of the decomposition method compared to the Markovian model.

In addition to the balanced line evaluation, we compared the stochastic methods against
unbalanced line enumeration using the Markovian evaluative procedure for a variety of
line sizes, service time configurations, and available buffer space. The results are sum-
marized in Figure 4. It is apparent, that the stochastic method configurations — although
identical to each other — are not always optimal for limited available buffer space; how-
ever, they quickly converge towards the optimal configurations as buffer space increases.
This difference can be accounted by the use of the fast decomposition evaluative proce-
dure used in the stochastic algorithm implementation yielding approximate results against
the use of the Markovian evaluative procedure for the enumeration method yielding exact
results.

The goal for using stochastic methods is to optimize large production line problems
where the cost of other methods is prohibitevely expensive. As an example the reduced
enumeration method when run on a 15 station line with a buffer capacity of 30 units
took more than 10 hours to complete on a 100MHz Pentium processor. As shown in
Figure 5 the cost of the stochastic methods is higher than the cost of the full and reduced
enumeration methods for small lines and buffer allocations. However, it quickly becomes
competitive as the number of stations and the available buffer size increase. In addition,
the performance of the genetic algorithm implementation is approximately an order of
magnitude better than the simulated annealing implementation. Notice that — in contrast
to the deterministic methods — the stochastic method cost does not increase together with
the available buffer space and that it increases only linearly with the number of stations.

Finally, Figure 6 depicts the comparative performance and calculated throughput for
the two stochastic methods when optimizing lines of up to stations and buffers.
The genetic algorithm implementation producing solutions with only evalua-
tions even for station lines is clearly the performance winner. However, as depicted
on the right hand chart, the throughput of the line configuration found by the genetic
algorithm is consistently lower than the throughput of the line found by the simulated
annealing method. The results we obtained could not be independently verified, because
no other numerical results for the buffer allocation problem in large production lines can
be found in the open literature.
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with reduced enumeration S(RE, Deco) for 15 stations (right).
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Figure 4: Simulated annealing S(SA, Deco) and genetic algorithms S(GA, Deco) with
decomposition evaluation versus complete enumerated Markovian S(CE, Exact) through-
puts for unbalanced lines with 4–6 stations.
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Figure 6: Performance and accuracy of simulated annealing S(SA, Deco) compared with
genetic algorithms S(GA, Deco) for large production lines. Note the scale on the
ordinate axis.

5 Conclusions and Further Work

The results obtained applying stochastic methods to the reliable line near-optimal buffer
allocation problem are interesting. The performance and the accuracy of the methods, al-
though inferior for optimizing small lines with limited buffer space, indicate clearly that
they become the methods of choice as the problem size increases. Both methods can be
used for optimizing large line configurations with simulated annealing producing more
optimal configurations and the genetic algorithm approach leading in performance. This
indicates that the two methods can be used in complimentary fashion. Real-time applica-
tions can utilise genetic algorithms for the swift recalculation of optimal configurations,
while batch-oriented calculations can utilise simulated annealing for obtaining an optimal
configuration.

Further investigation is needed in order to fully evaluate the potential of the two meth-
ods. The failure, in large production lines, of the genetic algorithm method to locate the
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optimal configuration found by the simulated annealing method is intriguing. It would be
interesting to carefully examine the “endgames” of the two methods and find if and how
the genetic algorithm implementation can be tweaked to evolve towards more optimal
configurations. A dynamic re-adjustment of the algorithm’s parameters (population size,
crossover rate, mutation rate, etc.) forms one such possibility.

The annealing schedule and the genetic algorithm parameters that we used can clearly
be optimized potentially increasing both methods’ accuracy and performance. The use of
heuristics in setting up the initial buffer configuration can decrease the number of steps
needed for reaching the optimal. Finally, we would like to test and compare the methods’
potential on similar problems especially involving parallel station production lines.
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