
Reliable software implementation using domain-specific languages

Diomidis Spinellis
Department of Information and Communication Systems, University of the Aegean, Greece

ABSTRACT: We describe the use of domain-specific languages for expressing critical design values and con-
straints in a civil engineering CAD software application. Through the use of these specialised languages in-
formation that is critical to the correct operation of the software can be expressed in a form that can be easily
drafted, verified, and maintained by domain experts (civil engineers) thus minimising the risk inherent from
the mediation of software engineers. Although domain-specific languages can offer increased expressiveness,
runtime efficiency, and reliability at a modest implementation cost, system architects should take into account
the issues of training costs, tool support, and software process integration.

In G. I. Schuëller and P. Kafka, editors, Proceed-
ings ESREL ’99 — The Tenth European Conference
on Safety and Reliability, pages 627–631, Munich-
Garching, Germany, September 1999. ESRA, VDI,
TUM, A. A. Balkema.

This is a machine-readable rendering of a working paper
draft that led to a publication. The publication should al-
ways be cited in preference to this draft using the above ref-
erence. This material is presented to ensure timely dissem-
ination of scholarly and technical work. Copyright and all
rights therein are retained by authors or by other copyright
holders. All persons copying this information are expected
to adhere to the terms and constraints invoked by each au-
thor’s copyright. In most cases, these works may not be
reposted without the explicit permission of the copyright
holder.

1 INTRODUCTION

The safety and reliability of products, processes,
equipment, and installations is often critically af-
fected by the software that controls their design and
operation (Winter et al. 1998). Software engineering

stands out among other engineering disciplines be-
cause of its tight, haphazard, and fluid coupling with
other elements of its operating environment. Mechan-
ical, civil, or electrical engineers can base their de-
signs on standardised and well understood specifica-
tions and constraints, and can design their implemen-
tations based on materials and components of known
modalities and properties. In contrast to that, soft-
ware engineers have to rely on specifications often
expressed in the notation most suited to the appli-
cation domain, design an artefact whose application
changes significantly the environment it was designed
for (Lehman 1991), and rely on implementors whose
output quality can vary up to a factor of 10 (Sackman
et al. 1968). These problems are of particular impor-
tance for safety critical applications where human life
can be put at risk from malfeasant software designs
and implementations.

Our approach for overcoming those problems is a
software process architecture based on domain spe-
cific languages (DSLs). These allow the specifica-
tion of critical parts of a software subsystem in the
most appropriate formalism for the application do-

1



Domain
Specification

A

DSL A

Written in

Domain
Specification

B

DSL B

...

Rest of
system code

C, Ada,
Fortran, ...

DSL-based System Implementation

Figure 1: UML diagram of a DSL-based system archi-
tecture.

main, thus bridging the gap between the domain ex-
pert specifications and the software implementation,
providing maintainability, and — once a particular
DSL has been correctly implemented — ensuring con-
sistent quality throughout the system’s lifecycle. In
the following paragraphs we illustrate this concept by
detailing the usage of DSLs in the design and imple-
mentation of a civil engineering CAD application. The
application is typical for the class described so far: it
embodies a large amount of domain knowledge and
its failures can lead to reliability and safety problems.

2 DOMAIN SPECIFIC LANGUAGES

A domain-specific language (DSL) (Ramming 1997)
is a programming language tailored specifically for an
application domain: rather than being general purpose
it captures precisely the domain’s semantics. Exam-
ples of DSLs include lex and yacc (Johnson and Lesk
1987) used for program lexical analysis and pars-
ing, HTML (Berners-Lee and Connolly 1995) used
for document mark-up, and VHDL used for electronic
hardware descriptions. Domain-specific languages al-
low the concise description of an application’s logic
reducing the semantic distance between the problem
and the program (Bell et al. 1994; Spinellis and Gu-
ruprasad 1997).

DSLs are, by definition, special purpose languages.
Any system architecture encompassing one or more

DSLs is typically structured as a confederation of
modules; some implemented in one of the DSLs and
the rest implemented using a general purpose pro-
gramming language (Fig. 1). As a design choice for
implementing safety-critical software systems DSLs
present two distinct advantages over a “hard-coded”
program logic:

Concrete Expression of Domain Knowledge
Domain-specific functionality is not coded into
the system or stored in an arcane file format;
it is captured in a concrete human-readable
form. Programs expressed in the DSL can be
scrutinised, split, combined, shared, published,
put under release control, printed, commented,
and even be automatically generated by other
applications.

Direct Involvement of the Domain Expert The
DSL expression style can often be designed so as
to match the format typically used by the domain
expert. This results in keeping the experts in a
very tight software lifecycle loop where they can
directly specify, implement, verify, and validate,
without the need of coding intermediaries. Even
if the DSL is not high-level enough to be used as
a specification language by the domain expert,
it may still be possible to involve the expert in
code walkthroughts far more productive than
those over code expressed in a general purpose
language.

3 PLATFORM DESCRIPTION

FESPA for Windows (LH Software 1998) is an inte-
grated software system used to analyse, dimension,
display, verify, and draw three dimensional building
structures (Fig. 2). A building is designed along the
following steps:

1. specification of the building in terms of slabs,
pillars, bars, and other nodes,

2. template-based production of additional floors,

3. calculation of pillar loads and creation and di-
mensioning of the building foundations, foot-
ings, and connecting rods,

2



Figure 2: FESPA for Windows featuring a building
overview and a three dimensional model displaying
beam tension moments.

4. solution of the space structure and plotting of
member distortions, forces, and moments,

5. calculation of section reinforcements, and

6. derivation and plotting of the wood mould.

All calculations described above are based on hun-
dreds of parameters that determine inter alia the ma-
terial and ground properties, the expected seismic en-
vironment, and the building’s intended usage.

4 METHODOLOGY

Around 5% of the 210000 lines of code representing
the user interface of FESPA are written in one of the
ten DSLs designed for concretely expressing impor-
tant elements of the system’s specification.

This concept can be illustrated considering the
specification of the system’s entity properties. Every
one of the 42 different entities (such as slabs, beams,
pillars, etc.) has a set of properties associated with
it. In total 1181 properties have to be specified. The
type of each property, the permitted value range, and
the set of allowable values form important parts of
the specification, have little meaning for the software
implementor, and are critical for the reliable and safe
operation of the system; a situation which calls for
the application of a DSL. A language was designed to

#define SL_STEEL 220:500:220;400;420;500

big_pressure:Rod stir-
rup steel:rod_steel_stirrup:-

:regulation_new:SL_STEEL

Figure 3: DSL specification of building parameter
properties.

Name Type Min Max
Slab steel pressure 220 500
Rod stirrup steel pressure 220 500
Pillar stirrup min inter-
sections

int 2

Beams’ min top bars int 2
Steel safety factor nounit
Friction angle angle 0 36
Brickwork fck pressure 0 50000
Shear wall top Rd len 1 1.4
Static beam load Z load -1000 1000

Figure 4: Domain-expert view of building parameter
properties.

bind together the type of every parameter, the name
presented to the user, the associated variable and func-
tion call-backs within the program, the value range,
explanatory diagrams, and the selection values.

Thus, DSL expressions of the form shown in Fig-
ure 3 are presented to the domain expert (civil engi-
neer) in tabular form as exemplified in Figure 4 and
are compiled into efficient C++ code for incorporation
into the CAD system by a small DSL compiler coded
in Perl (Wall and Schwartz 1990). The presentation
of values illustrated above allows the domain expert
to directly specify and verify important aspects of the
system’s implementation without relying on interme-
diaries.

A similar methodology was followed for express-
ing other elements of the system’s operation. Rep-
resentative examples include the specification of the
system’s:

Commands The grouping, functionality, and ex-
planatory details of the 450 available commands.

3



10

100

1000

10000

100000

Cmd Toolb Msg Menu StringReportLayer Prop Pers Table

Li
ne

s 
of

 C
od

e 
(lo

g 
sc

al
e)

Domain-specific Language

Compiler
Domain input
Output code

Figure 5: Size metrics of the system’s DSL-based im-
plementation

Toolbars The functionality, icons, and explanatory
details of the system’s toolbars.

Menus The names, associated commands, allowable
execution context, and initialisation sequence for
the system’s menu structure.

Reports The specification of the report generator.

Layers The grouping, functionality, and interactions
between the system’s 68 layers of entities.

Persistency Data allowing the automatic persistent
storage of the user property selections within the
data files. The input source for this DSL is actu-
ally a suitably annotated version of the system’s
source code.

For every one of the above DSLs we implemented a
specialised compiler which read its domain-specific
input source and transformed it into efficient C++
code. The relationship between the lines of code
needed to implement the compiler, the domain-
specific data, and the resulting target code is illus-
trated in Figure 5.

5 APPRAISAL

The object of a DSL-based software architecture is to
minimise the semantic distance between the system’s
specification and its implementation. Although the

concept bears similarity to executable specification
languages (Sommerville 1989, p. 125), (Turski and
Maibaum 1987, p. 135) such as (Paryavi and Hank-
ley 1995) the DSL approach exhibits some important
advantages:

Expressiveness Executable specification languages
taking a Swiss army knife approach towards the
problem of specification offer facilities for spec-
ifying all types of systems, but often at a cost of
clearness of expression. As an example OBSERV

(Tyszberowicz and Yehudai 1992) provides a
multiparadigm environment allowing the system
specification using object-oriented constructs, fi-
nite state machines, and logic programming. In
contrast, DSLs being tailored towards a narrow,
specific domain can be designed to provide the
exact formalisms suitable for that domain.

Runtime Efficiency The possible interactions be-
tween different elements of a general purpose
specification language such as its type system
and its support for concurrency result in runtime
inefficiencies. A narrowly focused DSL can em-
ploy the most efficient implementation strategy
and specialised optimisations for satisfying the
expressed specification.

Modest Implementation Cost DSLs are typically
implemented by a translator that transforms the
DSL source code into source or intermediate code
compatible with the rest of the system. All DSL

translators we used in the FESPA for Windows
implementation transform DSL source code into
C++ source code. Such an approach can often be
implemented using string processing languages
such as awk (Aho et al. 1979) and Perl, language
development tools such as lex and yacc, spe-
cialised systems such as TXL (Cordy et al. 1991)
and KHEPERA (Faith et al. 1997), or declara-
tive languages such as Prolog and ML. The DSL

implementation cost is — and should always be
— modest; in our case we implemented ten DSL

translators in a total of 4000 lines of Perl.

Reliability As described in the previous paragraph,
the limited scope of a DSL often allows a source-

4



to-source transformation type of implementa-
tion. The small scale of the required implemen-
tation effort often results in a translator whose
correctness can be trivially verified. The size of
typical executable specification languages means
that the implementor must often take the correct-
ness of the language’s implementation on trust.

On the other hand, the system architect contemplat-
ing the use of a DSL architecture should also have in
mind the following potential shortcomings of this ap-
proach:

Tool Support Limitations CASE and integrated
software development tools offer only limited
support for integrating DSLs into the devel-
opment process. Ad hoc solutions are often
required to smoothly integrate DSL code with
existing revision control systems, compilers,
editors, source browsers, and debuggers.

Training Costs In contrast to established specifica-
tion languages such as Z (Potter et al. 1991) sys-
tem implementors and maintainers will by defi-
nition have no prior exposure to the DSL being
used. This problem is somehow mitigated by the
fact that a correctly chosen DSL will be familiar
to other participants of the implementation effort
such as those involved in the specification, beta
testing, and final use. These participants will be
able to perform DSL code walkthroughs — a task
normally reserved for experienced software en-
gineers.

Design Experience DSL-based system architectures
are not widely adopted within the software in-
dustry. As a result, there is an evident lack of
design experience, prescriptive guidelines, men-
tors, design patterns, and supporting scientific
literature. Early adopters will need to rely more
on their own judgement as they adopt the ap-
proach in a stepwise fashion.

Software Process Integration The use of DSLs is
not yet an integral part of established software
processes. Therefore, the software process be-
ing used has to be modified in order to take

into account the design, implementation, integra-
tion, debugging, and maintenance of the adopted
DSLs.

6 CONCLUSIONS

DSLs offer an additional level of abstraction in the im-
plementation of software-based systems. In the exam-
ple we described, 11000 lines of DSL specifications
written, reviewed, and maintained by domain experts
are automatically translated into 87000 lines of C++
code. A DSL-based architecture can be utilised in all
areas where there is a formal standardised specifica-
tion particular to the application domain that can be
relatively easily translated into a standard program-
ming language. Where this part of the specification
is large or fluid, significant increases in software re-
liability, maintainability, and cost can be achieved
through the use of the proposed DSL approach.

5



REFERENCES
Aho, A. V., B. W. Kernighan, and P. J. Weinberger

(1979). Awk — a pattern scanning and pro-
cessing language. Software: Practice & Expe-
rience 9(4), 267–280.

Bell, J., F. Bellegarde, J. Hook, R. B. Kieburtz,
A. Kotov, J. Lewis, L. McKinney, D. P.
Oliva, T. Sheard, L. Tong, L. Walton, and
T. Zhou (1994). Software design for reliability
and reuse: a proof-of-concept demonstration.
In Conference on TRI-Ada ’94, pp. 396–404.
ACM: ACM Press.

Berners-Lee, T. and D. Connolly (1995, Novem-
ber). RFC 1866: Hypertext Markup Language
— 2.0. Status: PROPOSED STANDARD.

Cordy, J. R., C. D. Halpern-Hamu, and E. Promis-
low (1991, January). TXL: A rapid prototyp-
ing system for programming language dialects.
Computer Languages 16(1), 97–107.

Faith, R. E., L. S. Nyland, and J. F. Prins (1997,
October). KHEPERA: A system for rapid im-
plementation of domain specific languages.
See Ramming (1997), pp. 243–255.

Johnson, S. C. and M. E. Lesk (1987, July-
August). Language development tools. Bell
System Technical Journal 56(6), 2155–2176.

Lehman, M. M. (1991, September). Software engi-
neering, the software process and their support.
Software Engineering Journal 6(5), 243–258.

LH Software (1998). FESPA for Windows. Athens,
Greece: Kleidarithmos. In Greek.

Paryavi, M. N. and W. J. Hankley (1995).
OOSPEC: an executable object-oriented spec-
ification language. In ACM 23rd annual com-
puter science conference. CSC ’95, pp. 169–
177. ACM: ACM Press.

Potter, B., J. Sinclair, and D. Till (1991). An
Introduction to Formal Specification and Z.
Prentice-Hall.

Ramming, J. C. (Ed.) (1997, October). USENIX
Conference on Domain-Specific Languages,
Santa Monica, CA, USA. USENIX.

Sackman, H., W. J. Erikson, and E. E. Grant
(1968, January). Exploratory experimental
studies comparing on-line and off-line pro-
gramming performance. Communications of
the ACM 11(1), 3–11.

Sommerville, I. (1989). Software Engineering
(Third ed.). Addison-Wesley.

Spinellis, D. and V. Guruprasad (1997, October).
Lightweight languages as software engineering
tools. See Ramming (1997), pp. 67–76.

Turski, W. M. and T. S. E. Maibaum (1987). The
Specification of Computer Programs. Addison-
Wesley.

Tyszberowicz, S. and A. Yehudai (1992, July).
OBSERV — a prototyping language and envi-
ronment. ACM Transactions on Software Engi-
neering and Methodology 1(3), 269–309.

Wall, L. and R. L. Schwartz (1990). Programming
Perl. Sebastopol, CA, USA: O’Reilly and As-
sociates.

Winter, V. L., J. M. Covan, L. J. Dalton, L. Al-
kalai, A. T. Tai, R. Harper, B. Flahive, W.-
T. Tsai, R. Mojdehbakhsh, S. Rayadurgam,
K. Mori, and M. R. Lowry (1998, April). Key
applications for high-assurance systems. Com-
puter 31(4), 35–45.

6


