
Software reliability: modern challenges

Diomidis Spinellis
Department of Information and Communication Systems, University of the Aegean, Greece

ABSTRACT: The evolution of computer technology is creating for safety-critical systems new challenges and
different types of failure modes. Modern computer processors are often delivered with errors, while intelligent
hardware subsystems may exhibit nondeterministic behaviour. Operating systems and programming languages
are becoming increasingly complicated and their implementations less trustworthy. In addition, component-
based multi-tier software system architectures exponentially increase the number of failure modes, while Inter-
net connectivity exposes systems to malicious attacks. Finally, IT outsourcing and blind reliance on standards
can provide developers with a false sense of security. Planning in advance for the new challenges is as important
as embracing the new technology.

In G. I. Schuëller and P. Kafka, editors, Proceed-
ings ESREL ’99 — The Tenth European Conference
on Safety and Reliability, pages 589–592, Munich-
Garching, Germany, September 1999. ESRA, VDI,
TUM, A. A. Balkema.

This is a machine-readable rendering of a working paper
draft that led to a publication. The publication should al-
ways be cited in preference to this draft using the above ref-
erence. This material is presented to ensure timely dissem-
ination of scholarly and technical work. Copyright and all
rights therein are retained by authors or by other copyright
holders. All persons copying this information are expected
to adhere to the terms and constraints invoked by each au-
thor’s copyright. In most cases, these works may not be
reposted without the explicit permission of the copyright
holder.

1 INTRODUCTION

Software increasingly forms a critical part in the de-
sign and operation of products, processes, equipment,
and installations affecting their safety and reliabil-

ity (Winter et al. 1998). Despite the important ad-
vances made over the last decades in the area of soft-
ware engineering and the successful realisation of
many safety-critical software systems, the evolution
of computer technology is creating new challenges
and different types of failure modes. In the following
sections we examine how advances and changes in
the areas of computer hardware components and sub-
systems, operating systems, software system architec-
tures, programming languages, and the software de-
velopment process can potentially affect the safety
and reliability of computer-based systems. Despite
the luddite connotations of our presentation we be-
lieve that a critical examination and appraisal of these
advances and their effects is of paramount importance
in the area of safety-critical applications.

2 HARDWARE

2.1 Components

Increasing chip densities have resulted in signifi-
cant advances in processor hardware performance
based on large scale integration of functional units,

1



Processor Errata
Intel 80C186 Embedded Processor 5
Texas Instruments TMS320C40 DSP 17
MIPS R4000SC 55
MIPS R4400PC/SC 23
Intel 386 EX Embedded Processor 40
Intel Pentium 82
Intel Pentium Pro 77
Intel Pentium II 58

Table 1: Documented errors in processor implemen-
tations.

pipelined designs, and the provision of additional
functionality (Hennessy and Patterson 1990, pp. 250–
349). However, as a result of pipelined architectures,
on modern processors it is practically impossible to
reason accurately and completely about the execution
of a program at the lowest level. The interdependen-
cies of the multiple functional units, many levels of
cache, and branch predictors all dynamically chang-
ing their behaviour as the program executes — often
in a multitasking environment — make the isolation
of problems that can arise at this level an experimental
rather than analytical reasoning task. Safety critical
software systems operating in such an environment
can not therefore be proven to satisfy a specification
using formal methods.

In addition, as the complexity of processors in-
creases so do the errors that are part of a given im-
plementation. Compiler and system software writ-
ers, but often also end-user software developers have
to be aware of those errors and design their imple-
mentations around all known errors. Some of these
hardware errors can result in a complete system lock,
others in data corruption, and others in subtle differ-
ences in arithmetic results; obviously all of them im-
portant to the designer of a computer-based safety-
critical system. Table 1 illustrates the number of dif-
ferent errors documented (e.g. (Intel Corp. 1996)) in
some processor implementations.

2.2 Subsystems

Modern microprocessor-controlled components such
as disk drives, network adapters, and graphic con-

Operating System Year Number of
system calls

First Edition Unix 1971 33
Seventh Edition Unix 1979 47
SunOS 4.1 1989 171
4.3 BSD Net 2 1991 136
HP-UX 9.05 1992 219
SunOS 5.4 1994 163
Linux 1.2 1996 211
SunOS 5.6 1997 190
Linux 2.0 1998 229
Windows Platform SDK 1998 3433

Table 2: Increasing operating system complexity as
demonstrated by the number of supported system
calls.

trollers often contain enough intelligence to create
a potential for problems at the system integration
level. As an example, many modern hard disks rely
on a thermal recalibration procedure to compensate
against temperature-induced changes in the drive’s
physical characteristics. Under some circumstances,
an unsophisticated implementation of this procedure
can delay the drive’s response time at random in-
stances rendering it unsuitable for real-time applica-
tions (Taylor et al. 1995).

The allocation of interrupts and input/output ad-
dresses in PCI-based “Plug & play” systems is per-
formed at system startup using a complicated ne-
gotiation procedure among active subsystem compo-
nents. In Windows-based systems supporting drivers
and modules are then loaded and run in a nondeter-
ministic order. As a result, Gutmann (1998) reports
that the state of such systems after a reboot is rela-
tively unpredictable. The implication of this is that
the establishment of a stable test platform or the re-
producibility of faults following a specific line of ac-
tions may not be feasible.

3 OPERATING SYSTEMS

Operating systems are constantly increasing in com-
plexity. A rough measure of their complexity can be
drawn by examining the number of supported sys-
tem calls illustrated in Table 2. A system call de-

2



fines an interface to the operating system; more sys-
tem calls increase the complexity of the operating sys-
tem needed to support them, provide additional op-
portunities for unwanted interactions between them,
and increase the chances of overlooked security loop-
holes.

This increasing complexity has important implica-
tions for the reliability of software developed for a
specific platform. Complicated interfaces are diffi-
cult to learn and use effectively (Spinellis 1998b). As
a result of their size and complexity, modern oper-
ating systems exhibit an increasing number of bugs;
demonstrated by the numerous “fixes” distributed by
their vendors. Developers of robust applications have
to take this into account coding around them, or insist
on the installation of all relevant fixes. Some fixes
may even introduce new errors or render other system
components inoperative. The bottom-line of this sit-
uation is, that the application developer is practically
rarely singly responsible for the reliability of an ap-
plication.

4 SOFTWARE SYSTEM ARCHITECTURE

Modern networked, multi-tier software system archi-
tectures exponentially increase the number of failure
modes based on the number of interconnected nodes
(Spinellis 1998a). Software commercial-of-the-shelf
(COTS) components are increasingly used as parts of
integrated systems (Voas 1998b). Their quality is of-
ten difficult to assess (Voas 1998a) and due to the
tight coupling between components enforced by some
programming languages (structured exception han-
dling, heap-based dynamic memory allocation, and
unbounded pointers) they may affect the reliability of
the software system in totally unforeseen ways.

The use of the Internet as a common network in-
frastructure often exposes applications to additional
failure modes related to the open and insecure nature
of the medium. Applications using the Internet as a
data pipe can face problems related to connectivity,
congestion, routing, and the domain name system. In
addition, such applications are exposed to hostile at-
tacks that can be carried out over the network (Bhi-
nami 1996; Denning 1990). Typical applications are
not coded to guard against malicious attacks; in fact

Title Year Pages
The C Programming Language
(Kernighan and Ritchie)

1978 228

The C Programming Language;
second edition (Kernighan and
Ritchie)

1988 272

The C++ Programming Lan-
guage (Stroustrup)

1986 328

The C++ Programming Lan-
guage; second edition (Strous-
trup)

1991 669

The C++ Programming Lan-
guage; third edition (Stroustrup)

1997 910

Table 3: The evolution in complexity of C and C++.

even system software that should have been coded in
such a way is often compromised (Spafford 1989).
Therefore, the connection of any safety-critical sys-
tem to the Internet can severely affect its reliability.

5 PROGRAMMING LANGUAGES

Similarly to operating systems, programming lan-
guages also have a tendency to grow in size and com-
plexity as they mature. Taking as a rough measure the
page number of the language’s canonical description
Table 3 provides an illustration of the evolution of the
C and C++ programming languages.

This trend has important implications for the de-
velopers of high-reliability systems. Large languages
are difficult to learn and use (Hoare 1983). It is nowa-
days not uncommon for programming teams to lack
people who understand the whole language at a level
sufficient to advise other members on issues regard-
ing the interrelationship between language elements.
Subtle bugs arising from the misunderstanding of lan-
guage features can thus survive code walkthroughs.
In addition, language complexity and advanced op-
timisation techniques combined with processor com-
plexity results in an increased number of bugs in mod-
ern compilers. This is clearly an additional risk factor
for high-reliability designs.

3



6 SOFTWARE DEVELOPMENT PROCESS
The changing nature of the software development pro-
cess can also negatively affect the reliability of the
delivered system. Information technology outsourc-
ing (Lacity et al. 1995) may exclude the contrac-
tor’s software developers from a holistic system-wide
perspective resulting in dangerous misunderstandings
and grey areas of responsibility. In addition, the
increasing adoption of quality systems such as the
ISO-9000 series (International Organization for Stan-
dardization 1991) and the Capability Maturity Model
(Herbsleb et al. 1997) may provide software develop-
ers and procurers with a false sense of security.

7 CONCLUSIONS

Despite the advances made over the last decades in
the design and implementation of safety-critical sys-
tems, major new challenges lie ahead. It is impor-
tant for managers, designers, and developers to be
aware that all architectural, technological, and organ-
isational improvements in the realisation of software
systems carry with them new challenges and dan-
gers. Their solution is most probably not technology-
based (Brooks, Jr. 1987). In the demanding world
of software-based safety-critical systems planning in
advance for the new challenges is as important as em-
bracing the new technologies.

Acknowledgements
The work reported herein was carried out within the
context of ISA-EUNET, an ESPRIT (ESSI-ESBNET,
project number 27450) R&D project funded by the
Directorate General III of the European Commission.

REFERENCES
Bhinami, A. (1996, June). Securing the com-

mercial internet. Communications of the
ACM 39(6), 29–35.

Brooks, Jr., F. P. (1987, April). No silver bullet:
Essence and accidents of software engineering.
IEEE Computer 20(4), 10–19.

Denning, P. J. (1990). Computers Under At-
tack: Intruders, Worms, and Viruses. Addison-
Wesley.

Gutmann, P. (1998, January). Software genera-
tion of practically strong random numbers. In
7th USENIX Security Symposium, San Anto-
nio, TX, USA. USENIX Association.

Hennessy, J. L. and D. A. Patterson (1990). Com-
puter Architecture: A Quantitative Approach.
Morgan Kaufmann Publishers.

Herbsleb, J., D. Zubrow, D. Goldenson, W. Hayes,
and M. Paulk (1997, June). Software quality
and the capability maturity model. Communi-
cations of the ACM 40(6), 30–40.

Hoare, C. A. R. (1983). Hints on programming
language design. In E. Horowitz (Ed.), Pro-
gramming Languages: A Grand Tour, pp. 31–
40. Computer Science Press. Reprinted from
Sigact/Sigplan Symposium on Principles of
Programming Languages, October 1973.

Intel Corp. (1996, July). 80C186 and 80C188
embedded microprocessors specification
update. Online. http://www.intel.se/design/-
intarch/specupdt/27289401.pdf. 29 August
1998.

International Organization for Standardization
(1991). Quality management and quality assur-
ance standards — Part 3: Guidelines for the
application of ISO 9001 to the development,
supply and mantenance of software. Geneva,
Switzerland: International Organization for
Standardization. ISO 9000-3:1991(E).

Lacity, M. C., L. P. Willcocks, and D. F. Feeny
(1995, May-June). IT outsourcing: Maximize

4



flexibility and control. Harvard Business Re-
view 73(3), 84–93.

Spafford, E. H. (1989, June). The Internet worm:
Crisis and aftermath. Communications of the
ACM 32(6), 678–687.

Spinellis, D. (1998a, November/December). The
computer’s new clothes. IEEE Software 15(6),
14–17.

Spinellis, D. (1998b, November). A critique of the
Windows application programming interface.
Computer Standards & Interfaces 20, 1–8.

Taylor, H., D. Chin, S. Knight, and J. Kaba (1995,
Summer). The magic video-on-demand server
and real-time simulation system. IEEE Parallel
& Distributed Technology 3(2), 40–51.

Voas, J. M. (1998a, June). Certifying off-the-shelf
software components. Computer 31(6), 53–59.

Voas, J. M. (1998b, June). The challenges of using
COTS software in component-based develop-
ment. Computer 31(6), 44–45.

Winter, V. L., J. M. Covan, L. J. Dalton, L. Al-
kalai, A. T. Tai, R. Harper, B. Flahive, W.-
T. Tsai, R. Mojdehbakhsh, S. Rayadurgam,
K. Mori, and M. R. Lowry (1998, April). Key
applications for high-assurance systems. Com-
puter 31(4), 35–45.

5


