
The Design and Implementation of a
Legal Text Database

Diomidis Spinellis

SENA S.A.
Kyprou 27

GR-152 37 Filothei
Greece

Abstract. We describe the design and implementation of a legal text database.
The database of provides a number of Greek Council of State decisions in the
form of a computer-accessible medium (CD-ROM). A graphical front-end is pro-
vided which allows the rapid retrieval of cases based on arbitrary keywords com-
bined using boolean operators. The database was populated by automatically con-
verting the word-processor files into a random text retrieval data structure. The
system has been designed and implemented with goals of wide availability, ac-
cessibility, extensibility, and user-friendliness.

1 Introduction

The supreme administrative court in Greece is the Council of State. It was established
in 1928 after the model of the French Counceil d’ Etat. Except for its advisory function
with regard to delegated legislation, the Council of State is primarily (unlike perhaps
its French prototype) a court of law. It is an administrative court of first and last in-
stance with jurisdiction over applications for judicial review “petitions for annulment”
of administrative acts for violation of law or abuse of discretionary power. It is also
the supreme court which decides final appeals against judgments of the lower admin-
istrative courts [3]. The decisions of the Council of State carry significant weight, and
are important to legislators, judges, lawyers, and civil servants. Up to 1983 each year’s
decisions were printed and distributed by the Council of State. The constantly increas-
ing volume of decisions made such an endeavour impractical and currently the only
official way supported for access to all decisions is through the archiving department
of the Council of State. We decided to implement a text database of Council of State
decisions to provide a widely accessible, practical, and user-friendly platform for their
dissemination.

Dimitris Karagiannis Editor, DEXA 94: 5th International Conference on Database Expert
Systems Applications, pages 339–348, Athens, Greece, September 1994. Springer Verlag.
Lecture Notes in Computer Science 856.
This is a machine-readable rendering of a working paper draft that led to a publication. The
publication should always be cited in preference to this draft using the reference in the previous
footnote. This material is presented to ensure timely dissemination of scholarly and technical
work. Copyright and all rights therein are retained by authors or by other copyright holders. All
persons copying this information are expected to adhere to the terms and constraints invoked
by each author’s copyright. In most cases, these works may not be reposted without the explicit
permission of the copyright holder.

2 Functional Description

2.1 Retrieval Software

The database is stored on a CD-ROM. The retrieval software provides a user inter-
face that runs under the Microsoft Windows graphical environment (Fig. 1), although
front-ends for text-based operating environments such as Unix and MS-DOS are also
available. The interface window contains the following items:

– the menu with the database commands,
– the tool bar providing rapid access to the most commonly used operations,
– the query area,
– the result selection area,
– the text viewing area, and
– the status bar containing query status and navigation information.

Fig. 1. Text Retrieval Interface Window

340

query orexpr
orexpr andexpr orexpr or andexpr
andexpr basic andexpr and basic
basic not basic word (query)

Table 1. Query language BNF grammar

In a typical session, the user performs a search by entering a query in the query area.
The query can consist of target words connected by the and, or, not boolean operators,
and grouped using brackets. A BNF description of the query language is given in Table
1. Words can be terminated by the wildcard character * to denote that any word starting
with the characters specified is to be matched. In addition, the search is not sensitive to
character case, and the Greek stress and diairesis character modifiers. Apart from the
above no other phonetic or semantic equivalences [8] are taken into account, nor does
our system ignore certain ‘stop-words’: we found that our users were often confused by
more complicated matching schemes. The terminating wildcharacter option is a simple,
yet powerful way to solve the problem of words found with multiple endings — a
common phenomenon in the highly inflective Greek language.

When the query is processed the system will report the number of matching texts.
A text is defined as a single Council of State decision. Typical texts are between 4K and
40K in length — a search granule convenient both for the end-user, and for searching,
storing and reporting. When an excessive number of matches is found, the report list
is pruned to a convenient length. The user can then select a case from the report list
by double clicking on its code number, and the full text of the case appears on the text
viewing area.

The user can the scroll through the text, search for a word within the text, or quickly
move to previous or next matching texts using the tool-bar arrow buttons. The text found
can also be saved in a file using a variety of formats, printed, or stored to the clipboard
— the Windows common area for user-specified inter-process communication.

Although the database is stored on a read-only medium, its contents are not static.
The user can define bookmarks throughout the database (Fig. 2) to specify specific
points of interest which can then be visited by selecting their name from the bookmark
menu. Furthermore, a user can add an annotation to a case decision. An annotation (Fig.
3) is a text entered by the user (either directly, or by pasting text from the clipboard) that
corresponds to a specific case. Whenever that case is retrieved the user can also read its
accompanying annotation.

The system provides a hypertext-structured, context-sensitive help system to guide
the user through its operation.

2.2 Database Construction Tools

The database construction tools are used to populate the database using the case deci-
sion texts. The conversion of the case decision texts into the database is performed only

341

Fig. 2. Bookmark Definition Window

Fig. 3. Annotation Window

once for every issue of the database by an expert operator; therefore a simple command-
line-based interface guides the indexing operation. The conversion is performed in three
phases:

1. Texts are converted from the word processor format used by the Council of State
clean-writting department into plain ASCII format and concatenated into a single
file separated by a special record separator character.

2. The text file is scanned and the following output is generated:
– a dictionary of all words contained in the database (the lexicon file) together

342

with their frequencies,
– indices for every separate record of the file, and
– the memory requirements for storing the data structures of the next phase.

3. The text file is scanned for a second time building the search structure that is used
by the random text retrieval algorithms. The text file together with the random text
retrieval search structures and a domain definition file form the released database.

3 System Design

The system consists of the database population tools which are used to create a database
distribution and the database access system which is used by the end-users. The database
access system is also split between the front-end user interface, and the back-end search
engine.

The database population tools perform the processor and memory intensive task of
creating the random text retrieval data structures. These data structures are based on an
inversion of the text data whereby every word points to the documents that contain it.
The method used for the inversion is a modified implementation of the one described
in [9]. During the inversion a compressed dictionary and word index data structure is
created in main memory, eliminating time-consuming access to disk. This is very im-
portant, as traditional techniques such as those described in [7] require large amounts of
temporary space and multiple random passes over the data, resulting in slow inversion
times. The amount of data generated by the Council of State is about 300MB every
decade, and is constantly increasing. For this reason an efficient inversion process in
both time and space was selected.

Fig. 4. Database file structure relational diagram

343

The database access system front-end is structured as a series of procedures associ-
ated with events generated by the windowing system. Each event (such as a button click,
a menu command, or a text selection) triggers the appropriate procedure which handles
the event and on completion returns control back to the windowing system. All low level
interaction, such as the processing of scrollbar events, the scrolling of the text, and the
editing of the query is automatically handled by the windowing system. The front-end
also maintains the dynamic — user-defined — part of the database (bookmarks and
annotations), as a parallel superimposed structure to the static part (Fig. 4).

Fig. 5. System data flow diagram

The database access system back-end receives the queries from the front-end (Fig.
5), performs lexical analysis to split them into words and operators, and parses the query
into an expression of search terms and logical connectives. The database is searched
for every term and an appropriate match vector containing a map of the search hits is

344

generated as a result of that search. The match vectors are combined and evaluated using
boolean algebra rules according to the user-entered logical connectives to form the final
match vector which is the result of the query. The result is maintained as state within the
back-end, and a separate set of functions are used by the front-end to access the match
vector as an opaque type. The words are searched by performing a binary search based
on a structure that points to a compressed word dictionary, which in turn is used to index
the specific text records (Fig. 4). The compressed search structures (described in detail
in section 4.1) are important for minimising the query response times performed using
the database’s CD-ROM distribution medium by clustering data together eliminating
expensive (150ms) disk seek operations [10, p. 218].

4 Implementation Details

4.1 Database Population

The conversion of the texts from the word processor format into ASCII is done by a small
filter program prototyped in the Perl programming language [11], and subsequently
ported into C for efficiency reasons. In the test run of the system three years of data
comprising 190MB of word processor data were processed to create a single 53MB file
of ASCII text.

The first pass of the inversion process scans the database building a word dictionary
containing the number of documents that contain each word. That number is used in the
second phase to create an efficient prefix encoding method [5, 4] based on a maximum
guaranteed gap measure between successive word occurrences. Specifically, according
to [9], given that the database contains documents and a word appears in of them,
we can encode the word gaps using a b-block code in the most efficient way if we use
as (the code’s prefix constant) the following:

In addition, the number of bits needed to encode all the word gaps for a given word
using a block code (the word’s) is then:

The first phase creates the dictionary containing the for every word, so that in the
second phase this data structure can be filled by the gaps between the word occurrences.
The main memory required by the second phase is thus given by . The results
of the first pass on the trial data appear in Table 2. It is apparent that the main memory
requirements (which are the only additional storage requirements apart from the text
data) are quite modest.

The second phase of the inversion process reads the dictionary file and scans the
data text building a search structure which contains:

– number of words,
– size of the compressed word dictionary,

345

Number Description
6,250 documents

51,143,208 number of characters
6,853,722 number of words

100,510 number of different words
835,054 bytes size of all distinct words

32 bytes size of largest word
483,660 bytes in compressed word dictionary

14,614,289 bits upper limit on memory usage

Table 2. Results of the first inversion phase

– size of the compressed gap bitvector (in bytes),
– number of documents,
– offsets into the compressed word dictionary,
– (,) pairs for every word,
– byte array containing for every word,
– “1 in ” compressed word dictionary,
– document gap bit encodings, and
– document indices.

The “1 in ” compressed dictionary is used to spare memory by only storing words
in groups of words as prefix/suffix differences from the first word in the group. In
our exemplar data this encoding achieved a 44% decrease in dictionary storage space
with . The second phase works by maintaining for every word a bit pointer
into the document gap bit encoding bit vector. For every word in the document, its gap
from the previous document is encoded and appended to the bit vector at the position

.

4.2 Query Processing

Queries are first translated into tokens by a simple hand-crafted lexical analyser based
on a state machine. The query is then processed by a recursive descent parser [1, p. 181]
which simultaneously evaluates the query by performing word searches and combining
the match vectors described in section 3 using logical operators on bit vectors. The
result of the query is then stored in a single bit vector and can be accessed by two
functions: one returning the number of matches, and the other the document index for
a given match.

Words are searched by performing a uniform binary search [6, p. 411] in the com-
pressed dictionary. The search comparison function is modified to scan forward
words to deal with the dictionary’s compression. Furthermore, the string comparison
function is modified to treat strings ending with the wildcard character as equal to
strings with the same prefix. After a matching word is found in the dictionary the or-
dinal numbers of the documents in which the word occurs can be easily calculated by

346

successively adding the word’s gap measures decoded from the word gap bit vector
structure.

4.3 Implementation Metrics

The implementation effort of the system was relatively modest at about 5000 lines of
code. The relative size of each part of the system is summarised in Table 3.

System Part Lines of Code
Document conversion 124
Inversion first pass 452
Inversion second pass 915
Query processing engine 1001
User interface shell 2570

Table 3. Implementation of system parts

For the text data described in Table 2 the first pass of the inversion process (lexi-
con construction and word frequency counting) took 8 minutes, while the second pass
(search structure creation) took 27 minutes. It is apparent that our process will still ter-
minate in manageable execution times even for an order of magnitude more data (both
passes use algorithms where is the number of distinct words in the text).

5 Related Work

Legal professionals depend on accurate and complete access to legislative and case
texts. Their needs are targeted by a number of commercial data providers at the national
and international level. Most databases are accessed via public switched networks, al-
though some are now distributed in CD-ROM format [2]. In Greece two companies,
Databank and HellasLex, sell legal database services — including court decisions —
accessible via dial-in modems. Our implementation differs in scale and approach: it can
be considered as a CD-ROM publication of recent Council of State decisions.

6 Conclusions and Further Work

We have presented the design and implementation of a Legal Text Database. Using a
small set of well researched data structures and algorithms together with an industry-
standard windowing interface we were able to construct an efficient, user-friendly and
responsive system that satisfies the needs of many legal professionals.

We are currently expanding the system adding more cases, and examining other
sources of legal texts that can be incorporated into our system. The generality of our

347

approach based on random text retrieval allows the modular and effortless addition
of arbitrary texts while still providing the professional with a reasonably structured
interface for retrieving the information he or she requires.

Acknowledgements

We would like to thank the President of the Council of State Mr. B. Botopoulos, the
Associate Judge Mr. B. Aravantinos for their invaluable support of this project, and the
EDP operator Mr. B. Koliopoulos for the technical assistance he provided.

References

1. Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers, Principles, Techniques, and
Tools. Addison-Wesley, 1985.

2. Chadwyck-Healey Ltd. New CD-ROM: EUROCAT. Eur-OP News, 3(2):3, October 1993.
3. Prodromos D. Dagtoglou. Constitutional and administrative law. In Konstantinos D. Ker-

ameus and Phaedon J. Kozyris, editors, Introduction to Greek Law, chapter 3, pages 21–91.
Kluwer, second edition, 1993.

4. R. C. Gallager and D. C. Van Voorhis. Optimal source codes for geometrically distributed
alphabets. IEEE Transactions on Information Theory, 21(2):228–230, March 1975.

5. S. W. Golomb. Run-length encodings. IEEE Transactions on Information Theory,
12(3):399–401, July 1966.

6. Donald E. Knuth. The Art of Computer Programming, volume 3 / Sorting and Searching.
Addison-Wesley, 1973.

7. Michael Lesk. Some applications of inverted indexes on the Unix system. In Unix Program-
mer’s Manual, chapter Volume 2A. Bell Laboratories, 1988.

8. Michael Lesk. Word manipulation in online catalog searching: Using the UNIX system for
library experiments. In Proceedings of the EUUG Spring 88 Conference, pages 135–147,
London, April 1988. European UNIX User Group.

9. Alistair Moffat. Economical inversion of large text files. Computing Systems, 5(2):125–139,
Spring 1992.

10. Ken C. Pohlman. The Compact Disc Handbook. Oxford University Press, 1992.
11. Larry Wall and Randal L. Schwartz. Programming Perl. O’Reilly and Associates, Se-

bastopol, CA, USA, 1990.

This article was processed using the LATEX macro package with LLNCS style

348

