Editor:

Warren Keuffel

wkeuffel@computer.org

Numerical Recipes in C++: The Art of Scientific Computing, 2nd edition by William H. Press,
Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery, Cambridge University Press,
2002, ISBN 0-521-75033-4, 1,002 pp., US$70.00.

rograms that perform sophisticated

numerical calculations critically de-

pend on the algorithms they use. Even

if you obtain the correct requirements,

come up with a brilliant architectural

design, and write maintainable and ef-
ficient code, it’s the underlying algorithm that
will often make or break your application. The
“Numerical Recipes” series of books distills in
an accessible format the background theory,
solid algorithms, and working programs for per-
forming all but the most advanced numerical-
analysis tasks needed for scientific computing
and many engineering applications.

The book series has grown from the 1988
original Fortran-based book to include sepa-
rate versions for Fortran 77, Fortran 90 (deal-
ing with parallel computing), C, and C++. The
second edition of Numerical Recipes in C++:
The Art of Scientific Computing is more than
50 percent larger than the first and includes
more than 300 algorithms.

Authoritative guidelines
for complex calculations

The book’s chapters detail linear algebraic
equation solutions, interpolation and extrapo-
lation, and functions’ evaluation and minimiza-
tion. They also cover Monte Carlo methods,
root finding, Eigensystems, the Fourier trans-
form and its applications, data modeling,
boundary value problems, ordinary and partial
differential equations, and integral equations.
The book also contains other algorithms that
scientists might find useful, such as those dealing
with the statistical description of data, random

94 IEEE SOFTWARE Published by the IEEE Computer Society

numbers, compression, coding, and arbitrary-
precision arithmetic. The book’s range of topics
is extremely wide; hopefully, the next edition’s
minimization techniques discussion will in-
clude additional stochastic methods apart from
simulated annealing, such as genetic algorithms
and tabu search techniques.

Anyone performing calculations more
complex than integer addition and subtrac-
tion is likely to benefit from this book’s some-
times wry guidelines. If, for example, you
think that ;2 +4? is the way to find the Eu-
clidean distance between two points, you’d
better rush out for a copy of the book. The
authors label this formula as “bad!” and ex-
plain that it will overflow if any of the num-
bers is as large as the square root of the largest
representable number. Instead, they propose
that you use

R A
(o<

In most cases, the authors don’t formally
examine the proposed algorithms’ stability
and accuracy properties—doing so would eas-
ily quadruple the book’s size with minimal
benefit to most readers. Instead, true to the
book’s title, the authors offer tried-and-tested
recipes that will make your scientific program-
ming a success.

Major improvements
The second edition finally does away with the

0740-7459/05/$20.00 © 2005 IEEE

ONLINE REVIEWS

“Uncovering Ignorance in Software Development” by Paul Freedman
A review of The Laws of Software Process: A New Model for the Production
and Management of Software by Philip G. Armour.

“A Definitive Source about UML” by Wilson Pardi Jr.
A review of UML Bible by Tom Pender.

Fortran-derived arrays and matrices in-
dexed from Element 1 that were infest-
ing earlier editions and uses a number of
C++ features to improve the algorithms’
presentation and value. Most impor-
tant, the authors use a family of tem-
plated objects to support a uniform im-
plementation of variable-sized vectors
and matrices. You can easily adapt the
provided containers’ minimal imple-
mentation into a wrapper for the more
full-featured matrix library you might
be using. In addition, the book’s code
isolates all program elements in appro-
priate C++ namespaces; efficiently passes
arguments to functions using C++ ref-
erences; uses the const keyword to
identify function arguments that won’t
be modified; and declares small, heav-
ily used functions as “inline.”

Unfortunately, the reader expecting
to find the C++ object-oriented and
generic programming features applied
on the algorithms themselves will be
severely disappointed. The authors pre-
sent all algorithms as global functions,
still named with cryptic 1960s Fortran-
era, six-character identifiers: amotsa,
besskl, covsrt, erfcc, and frprmn.
They claim that this makes the func-
tions easier to reuse in other applica-
tions, since the functions carry rela-
tively little additional supporting
baggage; the six-character identifiers
maintain continuity and compatibility
with the series’ widely used earlier edi-
tions. However, I was left wondering
how the power of full-fledged generic
programming; the C++ Standard Tem-
plate Library’s containers, iterators,
and algorithms; and the use of object-
based information hiding, encapsula-
tion, and inheritance could have been
applied to the book’s substantial and
important body of algorithmic knowl-
edge. Given that the book will be heav-
ily used by scientists of all fields for
years to come, its failure to use the ab-
stractions and methods that we com-
puting professionals consider impor-
tant software building blocks is a
problem that our profession should
face, explain, and address.

Diomidis Spinellis is an associate professor in the De-
partment of Management Science and Technology at the Athens
University of Economics and Business. Contact him at dds@aueh.gr.

www.computer.org/software/bookshelf

A Book by Another
Name

Programming in the .NET Environment
by Damien Watkins, Mark Hammond,
and Brad Abrams, Addison-Wesley,
2002, ISBN 0-201-77018-0, 523 pp.,
US$44.99.

A few years ago, [was working with
an object framework whose base class
provided a default identity-based
Hash () and Equals (). I created a con-
crete subclass and wanted Equals () to
compare the contents of my object, not
just check for identity. I overrode
Equals () and happily went on my way.
Unfortunately, I had made a beginner’s
mistake. There’s a strong relationship

The book should actuallv
be called Gommon
Language Runtime from
the Perspective of a
Gompiler Writer
because that’s what it
covers best.

between Equals () and Hash(). If two
objects are “equal,” the hash function
must return the same value for both ob-
jects. If documentation is going to de-
scribe the .NET System.Object class,
Equals, and GetHashCode, then it
must necessarily describe this strong
relationship. The .NET Framework
Software Development Kit documenta-
tion passes this test. Unfortunately,
Programming in the .NET Environ-
ment does not.

The book should actually be called
Common Language Runtime from the
Perspective of a Compiler Writer be-
cause that’s what it covers best. Com-
pilers and tools normally expose the
CLR, so many people just think of it as
their compiler runtime. This book skill-
fully highlights and demonstrates with
concrete examples various pieces of the
CLR. Key parts of the CLR are the
type, metadata, and execution systems
and how they interact across multiple
languages. Each system gets an entire
chapter in the book, which shows how
both the CLR and base framework of
.NET support building and deploying
various types of applications. The book
only broadly describes the framework
class library, but, admittedly, a full de-
scription would take several volumes.
About one-third of the book consists of
appendices that describe, from the per-
spective of those that did the work, the
porting of several language compilers
to the .NET environment.

Although there’s good material
here, it can’t overcome two major
flaws—the unevenness of both the ma-
terial and the editing. (These comments

January/February 2005 I|EEE SOFTWARE 95

