
1 0 8 I E E E S O F T W A R E N o v e m b e r / D e c e m b e r 2 0 0 0 0 7 4 0 - 7 4 5 9 / 0 0 / $ 1 0 . 0 0 © 2 0 0 0 I E E E

bookshelf
E d i t o r : Wa r r e n K e u f f e l ■ w k e u f f e l @ c o m p u t e r . o r g

The Pragmatic Programmer: From Journey-
man to Master by Andrew Hunt and David
Thomas, Addison Wesley, Reading, Mass.,
2000, 0-201-61622-X, 321 pp., US$34.95.

E
arly in my programming career, I was
lucky to come across Brian Kernighan
and P.J. Plauger’s Elements of Pro-
gramming Style (McGraw-Hill, 1978)
and Jon Louis Bentley’s Programming
Pearls (Addison Wesley, 1985). These

books deeply influenced me. Since 1988,
when the last volume of Programming Pearls
was published, no book has matched the in-
sight and empathy to programming of those
works. Although Elements of Programming
Style is a classic, its Ratfor (rational Fortran)
examples made me hesitant to recommend it
to colleagues and students.

Fortunately, the last two years have
blessed us with a new edition of Program-
ming Pearls, Kernighan and Rob Pike’s the
Practice of Programming (Addison Wesley,
1999), and now Andrew Hunt and David
Thomas’s The Pragmatic Programmer
(www.pragmaticprogrammer.com). The
progress of technology has brought with it
new tools and approaches. Scripting lan-
guages, client–server computing, graphical
user interfaces, integrated development en-
vironments, object orientation, Web appli-
cations, and Internet time all provide new
opportunities and challenges for today’s
programmer. The Pragmatic Programmer
addresses these issues and more, making
the authors’ experience accessible to all pro-
grammers.

Accessible, Self-Paced Learning
The book targets those who know how to

program and want to improve their skills.
Structured in self-contained sections, it can

be read in random order. This lets readers
selectively read and apply sections most per-
tinent to their situation. For example, some
sections assume knowledge of Perl. Because
the authors rightly consider plain text pro-
cessing an important skill for addressing
complexity, readers can read those sections
when they have learned Perl (the authors
recommend learning one new programming
language each year).

The authors typically condense their dis-
cussion of many topics in the form of a mem-
orable one-line tip. These span from the
functional, “learn a single editor well,” to
the practical, “coding ain’t done till all tests
run,” to the deep, “abstractions live longer
than details.”

Hunt and Thomas have a talent for mak-
ing concepts accessible and for motivating
readers by using inspiring analogies. Revi-
sion control systems are fittingly compared
to an “undo key” that spans an entire pro-
ject’s lifetime; all programming artifacts, not
just source code, should therefore be placed
under revision control.

On the subject of refactoring—which
both in academia and industry has not re-
ceived the attention it deserves—Hunt and
Thomas assert that software construction
shares more common traits with gardening
than with building construction—a recurrent
analogy in software engineering circles.
Plants can thrive, but they need pruning. Mi-
nor adjustments can make the garden more
aesthetically pleasing, but activities such as
monitoring the garden’s health, moving
plants around, and fertilizing never stop.

Finally, when discussing specifications,
Hunt and Thomas ask readers to write a
specification for tying shoelaces, the morale
being that some things are easier done than
specified.

Practical Programming
Advice
Diomidis Spinellis

N o v e m b e r / D e c e m b e r 2 0 0 0 I E E E S O F T W A R E 109

BOOKSHELF

Introduction to the Team Software
Process is the latest in the Software
Process Improvement series from the
still-prolific Watts Humphrey. Di-
vided into four parts (plus a compre-
hensive appendix), the book is de-
signed as a process management
course (the TSPi) for software teams.
A software tool is also available from
the publishers, which contains the
forms and scripts used in the book.

Like Humphrey’s earlier work, A
Discipline for Software Engineering
(Addison Wesley, 1995), which intro-

duced the concept of a Personal Soft-
ware Process (PSP) and presented
practices that individual software de-
velopers could follow, this book is es-
sentially designed for use in an acad-
emic environment.

Whys and Wherefores
The first part of the book covers

why companies need a team software
process. Part 2 describes how the TSPi
works, Part 3 describes the various
roles associated with a software team,
and Part 4 looks at working patterns

within teams. However, Humphrey
suggests a sequence in which the chap-
ters should be read, which coincides
with the phases encountered during
software development.

Like Humphrey’s previous books,
many of the ideas highlighted already
reside within the public domain. What
he has done heretofore, and very skill-
fully in my opinion, is incorporate
those ideas into one coherent, practical
whole. Although Introduction to the
Team Software Process is no exception
in this regard, it is very much an in-
troduction to how software teams
might use defined processes to their
advantage.

Broad Range of Practical
Advice

The range of issues Pragmatic Pro-
grammer covers is large—their com-
mon thread is ways to become a better
programmer. Thus, we read about hu-
man development and social issues, de-
sign concepts and methods, a wide va-
riety of tools and approaches for using
them, defensive programming, tech-
niques for programming in the large
and in the small, requirements, and
project management. The pragmatic
advice offered similarly varies from the
very technical (when debugging, you
can sometimes determine the culprit
for variable corruption by reading the
memory in the variable’s neighbor-
hood) to the humane (sign your work
and be proud of it).

Although many excellent books
cover software design, most of them,
written by the very people behind a
specific methodology, are necessarily
narrow-focused. Refreshingly, we
can turn to Hunt and Thomas for a
broad and accessible anthology of
approaches that work. For example,
they suggest when to structure an ap-
plication around services, offer de-
tails on when and how to implement
a model-view-controller structure
(mind you, not just for graphical pre-
sentation), and explain how to use

blackboard techniques.
By now, we all know the problems

of the rigid waterfall model develop-
ment processes; it is encouraging to
see that the authors provide concrete
advice on how to incrementally de-
velop software. The tracer code ap-
proach they advocate is based on
the development of architecturally
complete—if not fully functional—
code for demonstrating and concept-
testing a software system. (The ap-
proach gets its name from another
analogy: the tracer bullets used to
identify a weapon’s firing direction).
This development mode—also advo-
cated in a slightly different form by
the Extreme Programming approach
(“implement the most important fea-
tures first”)—complements rapid
prototyping as a way to obtain early
feedback during development.

A Well-Rounded Offering
The text is accompanied by a num-

ber of interesting exercises and aptly
termed challenges. It was difficult to
resist the temptation of thinking of an
answer and comparing it against the
one provided at the end of the book.
(Which has a higher bandwidth: a 1-
Mbp communications line or a person
walking between two computers with
a full 4-GByte tape? In your answer,

document the constraints used.)
To keep the volume of the book

manageable, many concepts and ideas
are presented in a cursory style and
some examples are rather contrived. I
got the impression that the authors
have enough experience to fill two
books—one for each of them. Instead,
as the next best thing, they provide
references to practical books and
pointers to free tools and documenta-
tion available on the Web. A selective
bibliography complements the mater-
ial offered. Although the books I men-
tioned in the first paragraph and An-
drew Koenig’s C Traps and Pitfalls
(Addison Wesley, 1988) are unfortu-
nately missing, the annotated bibliog-
raphy can serve as a shopping list for
populating a budding programmer’s
bookshelf.

I often found myself nodding and
smiling while reading the book; the
authors have successfully mined
nuggets from the current program-
ming practice field and made them
available in an accessible and enjoy-
able form. I will certainly recommend
this book to people whose code I will
have to read or use.

Diomidis Spinellis is an assistant professor in the Department
of Information and Communication Systems at the University of
the Aegean. Contact him at dspin@aegean.gr.

Organizing the Rabble
Gerry Coleman
Introduction to the Team Software Process by Watts S. Humphrey, Addison
Wesley, Reading, Mass., 2000, ISBN 0-201-47719-X, 459 pp., US$49.95.

1 1 0 I E E E S O F T W A R E N o v e m b e r / D e c e m b e r 2 0 0 0

BOOKSHELF

The Meat and Three Caveats
But what is the main thrust of the

book? Humphrey covers each devel-
opment phase, from project launch
through system testing, in meticulous
detail. For each phase, he provides a
process script and associated forms
that describe the process the team
should follow during that particular
phase. Each phase then has its own en-
try and exit criteria and accompanying
measures to let the team control the
development. He also documents in
detail the roles needed during projects,
such as team leader, development
leader, and quality manager. He pri-
marily focuses on roles in the TSPi.
The roles might rotate between team
members or, as happens in many
teams, one person might occupy more
than one role. All of these ideas are
well argued and clearly presented.

However, to achieve widespread
acceptance and adoption by the soft-
ware community, the TSP faces a
number of significant challenges. Be-
cause of the hothouse academic train-
ing environment the book envisions,

many team structures, formations,
and experiments are possible. Yet,
how many industrial software teams
are self-directed and facilitate the
members to choose their own roles?
How many such teams operate within
a framework where each team mem-
ber appraises another’s performance?
And how many software teams oper-
ate in the cloistered, bubble-like envi-
ronment the book describes, without
recourse to or liaison with user de-
partments, senior management, cus-
tomer representatives, and so forth?

Definitely Maybe
Examining the TSP from a project

manager’s perspective, it is evident
that you would have to customize
substantially the documented ap-
proaches to use them successfully in a
development context, where team and
project sizes vary and existing corpo-
rate processes are often in place.
Humphrey states that industrial soft-
ware teams are carrying out trials us-
ing the TSP. As these results are pub-
lished, it will be interesting to see to

what extent the TSP was tweaked.
The TSP’s forerunner and prereq-

uisite, the PSP, has not achieved a sig-
nificant impact on engineers, and
based on published studies to date,
its success rate seems relatively low
and confined to a handful of compa-
nies. As the TSP requires practition-
ers to be PSP-trained, it is difficult to
see how the software community can
be convinced of the benefits of a new
model whose predecessor encoun-
tered such marked resistance.

Nonetheless, the book is an excel-
lent overview of the processes and
practices that software teams should
use. Many of the chapters—particu-
larly Chapter 9 on integration and
system testing and the Appendix on
configuration management—are ex-
tremely well written and should be
required reading for all software
teams embarking on a development
project.

Gerry Coleman is a lecturer in the Department of Com-
puting and Mathematics at Dundalk Institute of Technology. Con-
tact him at gerry.coleman@dkit.ie.

Starting in January, IEEE Design & Test of
Computers will publish six issues a year
instead of four.

Look for the January-February 2001 issue
on defect-oriented diagnosis for very deep
submicron systems.

IEEE Design & Test of Computers
The resource for computer
architecture professionals

computer.org/dt

BIMONTHLYV

